ENCOUNTER with MATHEMATICS
「Lie 群の離散部分群の剛性理論」
参考文献一覧
各講演に対する参考文献
金井(第1話)- Mostow の剛性定理
- Kan88
-
Masahiko Kanai, Tensorial ergodicity of geodesic flows, Geometry and
analysis on manifolds (Katata/Kyoto, 1987), Springer, Berlin, 1988,
pp. 142-157.
- Mos66
-
G. D. Mostow, On the conjugacy of subgroups of semisimple groups,
Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math.,
Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966,
pp. 413-419.
- Mos68
-
G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of
hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. No.
34 (1968), 53-104.
- Mos73
-
G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton
University Press, Princeton, N.J., 1973, Annals of Mathematics Studies, No.
78.
- VS93
-
È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of
spaces of constant curvature, Geometry, II, Springer, Berlin, 1993,
pp. 139-248.
納谷 - Weil の局所剛性定理
- Cal61
-
Eugenio Calabi, On compact, Riemannian manifolds with constant
curvature. I, Proc. Sympos. Pure Math., Vol. III, American Mathematical
Society, Providence, R.I., 1961, pp. 155-180.
- CV60
-
Eugenio Calabi and Edoardo Vesentini, On compact, locally symmetric
Kähler manifolds, Ann. of Math. (2) 71 (1960), 472-507.
- Kos68
-
J.-L. Koszul, Formes harmoniques vectorielles sur les espaces localement
symétriques, Geometry of Homogeneous Bounded Domains (C.I.M.E., 3 Ciclo,
Urbino, 1967), Edizioni Cremonese, Rome, 1968, pp. 199-261.
- MM63
-
Yozô Matsushima and Shingo Murakami, On vector bundle valued harmonic
forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math.
(2) 78 (1963), 365-416.
- Rag72
-
M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag,
New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.
- Sel60
-
Atle Selberg, On discontinuous groups in higher-dimensional symmetric
spaces, Contributions to function theory (internat. Colloq. Function Theory,
Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960,
pp. 147-164.
- Wei60
-
André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2)
72 (1960), 369-384.
- Wei62
-
André Weil, On discrete subgroups of Lie groups. II, Ann. of
Math. (2) 75 (1962), 578-602.
- Wei64
-
André Weil, Remarks on the cohomology of groups, Ann. of Math. (2)
80 (1964), 149-157.
金井(第 2 話)- Margulis の超剛性と調和写像
- Cor92
-
Kevin Corlette, Archimedean superrigidity and hyperbolic geometry, Ann.
of Math. (2) 135 (1992), no. 1, 165-182.
- GS92
-
Mikhail Gromov and Richard Schoen, Harmonic maps into singular spaces and
p-adic superrigidity for lattices in groups of rank one, Inst. Hautes
Études Sci. Publ. Math. (1992), no. 76, 165-246.
- JY86
-
J. Jost and S.-T. Yau, The strong rigidity of locally symmetric complex
manifolds of rank one and finite volume, Math. Ann. 275 (1986),
no. 2, 291-304.
- KN62a
-
Soji Kaneyuki and Tadashi Nagano, On certain quadratic forms related to
symmetric riemannian spaces, Osaka Math. J. 14 (1962), 241-252.
- KN62b
-
Soji Kaneyuki and Tadashi Nagano, On the first Betti numbers of compact
quotient spaces of complex semi-simple Lie groups by discrete subgroups,
Sci. Papers Coll. Gen. Ed. Univ. Tokyo 12 (1962), 1-11.
- KS93
-
Nicholas J. Korevaar and Richard M. Schoen, Sobolev spaces and harmonic
maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4,
561-659.
- Mat62
-
Yozô Matsushima, On the first Betti number of compact quotient spaces
of higher-dimensional symmetric spaces, Ann. of Math. (2) 75
(1962), 312-330.
- MSY93
-
Ngaiming Mok, Yum Tong Siu, and Sai-Kee Yeung, Geometric
superrigidity,
Invent. Math. 113 (1993), no. 1, 57-83.
- Rag95
-
M. S. Raghunathan, The first Betti number of compact locally symmetric
spaces, Current trends in mathematics and physics, Narosa, New Delhi, 1995,
pp. 116-137.
- Pan98
-
Pierre Pansu, Formules de Matsushima, de Garland et propriété
(T) pour des groupes agissant sur des espaces symétriques ou des
immeubles, Bull. Soc. Math. France 126 (1998), no. 1, 107-139.
- Siu80
-
Yum Tong Siu, The complex-analyticity of harmonic maps and the strong
rigidity of compact Kähler manifolds, Ann. of Math. (2) 112
(1980), no. 1, 73-111.
- YB53
-
K. Yano and S. Bochner, Curvature and Betti numbers, Princeton
University Press, Princeton, N. J., 1953, Annals of Mathematics Studies, No.
32.
井関 - Besson-Courtois-Gallot の剛性定理
- BCG96
-
Gérard Besson, Gilles Courtois, and Sylvestre Gallot, Minimal entropy
and Mostow's rigidity theorems, Ergodic Theory Dynam. Systems 16
(1996), no. 4, 623-649
- BCG98
-
G. Besson, G. Courtois, and S. Gallot, A real Schwarz lemma and some
applications, Rend. Mat. Appl. (7) 18 (1998), no. 2, 381-410.
- Bou96
-
Marc Bourdon, Sur le birapport au bord des
-espaces, Inst. Hautes Études Sci. Publ. Math. (1996),
no. 83, 95-104.
- DE86
-
Adrien Douady and Clifford J. Earle, Conformally natural extension of
homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2,
23-48.
- Ham90
-
Ursula Hamenstädt, Entropy-rigidity of locally symmetric spaces of
negative curvature, Ann. of Math. (2) 131 (1990), no. 1, 35-51.
- Pan89
-
Pierre Pansu, Métriques de Carnot-Carathéodory et
quasiisométries des espaces symétriques de rang un, Ann. of Math. (2)
129 (1989), no. 1, 1-60.
- Pan97
-
Pierre Pansu, Volume, courbure et entropie (d'après G. Besson, G.
Courtois et S. Gallot), Astérisque (1997), no. 245, Exp. No. 823,
3, 83-103, Séminaire Bourbaki, Vol. 1996/97.
金井(第 3 話) - 群作用の局所剛性・非存在定理
- Ben96
-
Elie Jerom Benveniste, Rigidity and deformations of lattice actions
preserving geometric structures, Ph.D. thesis, Chicago University, 1996.
- BM99a
-
M. Burger and N. Monod, Bounded cohomology of lattices in higher rank
Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 199-235.
- BM99b
-
M. Burger and N. Monod, Erratum: ``Bounded cohomology of lattices in
higher rank Lie groups'' [J. Eur. Math. Soc. (JEMS)
1 (1999), no. 2, 199-235; 1694584], J. Eur. Math. Soc. (JEMS)
1 (1999), no. 3, 338.
- FSa
-
Benson Farb and Peter Shalen, Groups of real-analytic diffeomorphisms of
the circle, Preprint.
- FSb
-
Benson Farb and Peter Shalen, Lattice actions, 3-manifolds, and
homology, Preprint.
- FS99
-
Benson Farb and Peter Shalen, Real-analytic actions of lattices, Invent.
Math. 135 (1999), no. 2, 273-296.
- Ghy92
-
Étienne Ghys, Déformations de flots d'Anosov et de groupes
fuchsiens, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2,
209-247.
- Ghy93
-
Étienne Ghys, Rigidité différentiable des groupes fuchsiens,
Inst. Hautes Études Sci. Publ. Math. (1993), no. 78, 163-185 (1994).
- Ghy99
-
Étienne Ghys, Actions de réseaux sur le cercle, Invent. Math.
137 (1999), no. 1, 199-231.
- Hur92
-
Steven Hurder, Rigidity for Anosov actions of higher rank lattices,
Ann. of Math. (2) 135 (1992), no. 2, 361-410.
- Hur94
-
Steven Hurder, A survey of rigidity theory for Anosov actions,
Differential topology, foliations, and group actions (Rio de Janeiro, 1992),
Amer. Math. Soc., Providence, RI, 1994, pp. 143-173.
- Kan
-
Masahiko Kanai, A remark on local rigidity of conformal actions on the
sphere, to appear in Math. Research Lett.
- Kan96
-
M. Kanai, A new approach to the rigidity of discrete group actions,
Geom. Funct. Anal. 6 (1996), no. 6, 943-1056.
- KL91
-
A. Katok and J. Lewis, Local rigidity for certain groups of toral
automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203-241.
- KLZ96
-
A. Katok, J. Lewis, and R. Zimmer, Cocycle superrigidity and rigidity for
lattice actions on tori, Topology 35 (1996), no. 1, 27-38.
- KS
-
N. J. Korevaar and R. Schoen, Global existence theorems for harmonic
maps: Finite rank spaces and an approach to rigidity for smooth actions,
Preprint.
- KS96
-
A. Katok and R. J. Spatzier, Nonstationary normal forms and rigidity of
group actions, Electron. Res. Announc. Amer. Math. Soc. 2 (1996),
no. 3, 124-133 (electronic).
- KS97
-
A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of
higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst.
Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 292-319.
- KY97
-
A. Kononenko and C. B. Yue, Cohomology and rigidity of Fuchsian
groups, Israel J. Math. 97 (1997), 51-59.
- Lab
-
François Labourie, Large groups actions on manifolds, Proceedings
of the International Congress of Mathematicians, Vol. II (Berlin, 1998), vol.
1998, pp. 371-380 (electronic).
- Lew91
-
James W. Lewis, Infinitesimal rigidity for the action of
on
, Trans. Amer. Math. Soc.
324 (1991), no. 1, 421-445.
- MQ
-
Gregory A. Margulis and Nantian Qian, Rigidity of weakly hyperbolic
actions of higher real rank semisimple lie groups and their lattices.
- Wei97
-
Shmuel Weinberger,
cannot act on small
tori,
Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI,
1997, pp. 406-408.
- Wit94
-
Dave Witte, Arithmetic groups of higher
-rank cannot
act on
1-manifolds, Proc. Amer. Math. Soc. 122 (1994), no. 2, 333-340.
- Zeg99
-
Abdelghani Zeghib, Quelques remarques sur les actions analytiques des
réseaux des groupes de Lie de rang supérieur, C. R. Acad. Sci. Paris
Sér. I Math. 328 (1999), no. 9, 799-804.
- Zim90
-
Robert J. Zimmer, Infinitesimal rigidity for smooth actions of discrete
subgroups of Lie groups, J. Differential Geom. 31 (1990), no. 2,
301-322.
その他
一般的解説
- GP91
-
M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric
topology: recent developments (Montecatini Terme, 1990), Springer, Berlin,
1991, pp. 39-137.
- Pan95
-
Pierre Pansu, Sous-groupes discrets des groupes de Lie: rigidité,
arithméticité, Astérisque (1995), no. 227, Exp. No. 778, 3,
69-105,
Séminaire Bourbaki, Vol. 1993/94.
- Spa95
-
R. J. Spatzier, Harmonic analysis in rigidity theory, Ergodic theory and
its connections with harmonic analysis (Alexandria, 1993), Cambridge Univ.
Press, Cambridge, 1995, pp. 153-205.
教科書・モノグラフ
- BGS85
-
Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of
nonpositive curvature, Birkhäuser Boston Inc., Boston, Mass., 1985.
- BP92
-
Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry,
Springer-Verlag, Berlin, 1992.
- Ebe96
-
Patrick B. Eberlein, Geometry of nonpositively curved manifolds,
University of Chicago Press, Chicago, IL, 1996.
- Fer98
-
Renato Feres, Dynamical systems and semisimple groups: an introduction,
Cambridge University Press, Cambridge, 1998.
- Jos97
-
Jürgen Jost, Nonpositive curvature: geometric and analytic aspects,
Birkhäuser Verlag, Basel, 1997.
- Mar91
-
G. A. Margulis, Discrete subgroups of semisimple Lie groups,
Springer-Verlag, Berlin, 1991.
- Mos73
-
G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton
University Press, Princeton, N.J., 1973, Annals of Mathematics Studies, No.
78.
- Rag72
-
M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag,
New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.
- Rat94
-
John G. Ratcliffe, Foundations of hyperbolic manifolds, Springer-Verlag,
New York, 1994.
- VS93
-
È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of
spaces of constant curvature, Geometry, II, Springer, Berlin, 1993,
pp. 139-248.
- Zim84
-
Robert J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser
Verlag, Basel, 1984.
日本語で書かれた解説記事等
- いぜ
-
井関裕靖,「G. Besson, G. Courtois and S. Gallot による Mostow の 剛性
定理の新証明」,
数学,第 49 巻,200-211.
- い1
-
伊原信一郎,「リー群の離散部分群」,上智大学数学講究録,no. 16, 1984.
- い2
-
伊原信一郎,「G. A. Margulis 氏の業績」,数学,第 31 巻,43-50.
- か1
-
金井雅彦,「力学系の不変幾何構造と剛性問題」,数学,第 52 巻,43-52.
- か2
-
金井雅彦,「群作用の剛性問題」,数学の楽しみ第 18 号に掲載の予定.
- さ
-
佐竹一郎,「リー群の話」に収録の付録「G. A. マルグリス」,日本評論社.