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An ODE on the complex plane.

d
_y:f(z’y), yECn,ZEC.
dz

A study of singularities of solutions.
fixed sing. m) sing of f
movable sing. mmp Sing depending on initial cond.

Painleve property:
ODE is said to have the Painleve property if any
movable singularities are poles.
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Thm. (Poincare, Fuchs)
If a first order ODE has the Painleve property,
it is equivalent to one of
(i) Solvable.
(ii) Riccati.
(iii) Weierstrass.

ay -
s

dy :
W (d_) 2493—9229—93-
z

a(2)y” +b(2)y + c(2).



Thm. (Painleve, Gambier, 1900)

If a second order ODE has the Painleve property,
it is equivalent to one of
(i) Solvable.
(ii) Linear.
(iii) Weierstrass.
(iv) the Painleve equations P1 to P6.
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Painleve equations are written as Hamiltonian systems.
dx 8HJ dy aHJ
(Ps): —=-——==, —=—1,
dz oy dz ox

Hamiltonian functions are given by
1

Hy = 5372 — =
1 1 1
Hyr = §$2 o §y4 R §zy2 — ay,

Hiy = —zy? + 2%y — 2zyz — 2ax + 20y,
zHi = 2°y? — 2y° + 2z + (o + B)zy — aw,
zHy =z(x+ 2)yly — 1) + asyz — aszy — ayx(y — 1),
2(z — 1)Hy1 = y(y — 1)(y — 2)z° + az(ou + a2)(y — 2)
—(u(y—1)(y —2) +asy(ly — z2) + aoy(y — 1)) .



Lax equations.
A, B : n X n matrix with a spectral parameter ), .
e Lax eq. in the sense of spectral preserving:

82 = |A, B] ==y Integrable system
9z
e Lax eq. in the sense of monodromy preserving:
oY oy S o OA
= =
0z v E2) v ('92 e O\

=) Painleve property.
(usually, non-autonomous Hamiltonian system)

[t is possible to find new Painleve egs. by
the bi-Poisson theory on Lie algebras.



The space of initial conditions.

Riccati equation. Any solution is meromorphic.

(Putting ¢y = ¢/ /u, u satisfies a linear equation.)

dy
T a(z)y” + b(z)y +

lyzl/ﬁ

d§
T —c(2)€ — b(2)¢

[y:C—>CP1 is

holomorphic.

CPlis called the
space of initial conditions.
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The space of initial conditions ...
A fiber sp. of a fiber bundle, on which any solutions
have analytic continuations for any 2.
1-dim:
Riccati «—> CP* (¢ =0)
Weierstrass €<—> torus (g = 1)
Solvable €<= (g > 2)
2-dim:
(Pr) ~ (Pry) <—> acertain class of alg. surfaces
characterized by the nine points blowup
of CP” and the Dynkin diagrams D.

(P1) {(P1) |(Pm) (P1v)|(Pv) |(Pv1)
D | Es|E7| Dg| g |Ds| Dy
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Newton diagram of ODEs.
Ex: The first Painleve equation.

SH~1,02 : :
; -((-9,-279-)-) ((.9.9_1_)1 /Newton diagram is the convex\
i = 6y% + 2 hull of these points in R?

; dz In this example, they lie on the

B (3204 12 =, ¢

gl i
Newton diagram === Toric variety

In this example, the associated toric variety is

the weighted projective space CP3(3,2,4,5).
This space provides a suitable compactification of
the natural phase space;

C° ={(z,y,2)} C CP°(3,2,4,5)




The weighted C* action:

2 o) =\ ey e A .
The quotient space is called the weighted
projective space Cg/w = CP3(3, 2,4,5)-

KA weighted projective space is an orbifold
\(algebraic variety) with singularities.

orbifold: M ~ UUa/Fa.

U, : manifold
I's : finite group



CP*(3,2,4,5)is defined by [z, y, z,&] ~ [Nz, Ny, \*z, Ne],

(i) When = # O,
Y 2 3

ARSI RN ST

~ [1,WY1,W2Z1,6051].

] e [1,Y1,Zl,€1].

x,y,2,e] ~ [1

The subset {z # 0} is homeo. to C*?/Zs.

(ii) When ¥ # 0,

4 i < &
T2 T JE D

~ [—XQ, :_, ZQ, —62].

The subset {y # 0} is homeo. to C?/Z,.



(i) The subset {z # 0} is homeo. to C3/Z,.
(iv) The subset {¢ # 0} is homeo. to C*/Zs.

We obtain

[CP3(3,2,4,5) = 27 G /75 - Co AR 03/25]

Inhomogeneous coordinates:
(Yl, Zl,El), (XQ, Zg, 62), (Xg, Y3,63), (X4, Y4, Z4)

In what follows, (X4, Y4, Z4) = (x, v, 2).

e RS Tl
—2/5 —2/5 —2/5
ooz A5



A ks
P(3,2,4,5) = C°/Z; U'C /7 U C° [ 7, U C E

W \y W Ny
(}/17 Zl) 51)7 (X27 227 52)7 (X37 Yéa 53)7 (CC, Y, Z)

\
Cellular decomposition

J

[ EBP(3,2,4:5)= C?/Zs U CP(3,2,4) ]

The first Painleve equation will be given on CB/Z5.
2-dim weighted proj. space CP?(3,2,4) is attached
at “infinity” .

A study of a singularity (x = ocoor y = oo or z = 00).
mm) A study of the behavior around CP?(3,2,4).



4 s
EP°(3,2.4,5) =C° /%5 U CY /2 U C i F ColFE

Ny, \y W Ny
- (1/1721751)7(X27Z27€2)7(X37Y23783)7(x7y7 z)j

Give the (P1) on the fourth coord (z,y, 2) .
In the other coordinates,

SR : Edys r 2Y1 (2Y2 + Z1/3) — 1
o AR ) de 5e1(2Y2 + Z1/3)
< dy dZy 42, (2Y7 + Z1/3) — &
ot | dey 5e1(2Y7 + Z1/3)
(dX, 3X3-12-2Z, [ dX3 _4-—4Y5+3Xze;
< deo A 9 X5 < d€3 56%
@ = 4X2Z2 o5 262 dﬁ 18 _4X3 o 2Y353
\ dEQ i3 5€2X2 : ¢ d53 55% :

(P1) is a rational ODE on CP?(3,2,4,5).
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Thm. Any solutions of (P;) are meromorphic.
For the proof, suppose that a sol. of (P;)has a singularity

at finite z = 24 ;
x(z) > 00 or y(z) > 00 aS 7z z,.
The coordinate change

X, xy_g/z X9 — 2
Zo | = Zy_2 : o — 0 dsS Zisadis
€2 y_5/2 g — 0.

It is convenient to rewrite as a 3-dim dynamical system as

Pax, 0oy i
< des 562 X5 ; *;,(2_—252)%(_6_22
\ d€2 5€2X2 ’ \ 2_5 ik

This system has a fixed point (X2, Z2,¢2) = (2,0,0).




The solution converges to the fixed point:

6 0
(X2,22,62)=1(2,0,0). 7—[0 2 -1
000

Poincare’s linearization theorem.

d?y 5 XzZ%Xzz—G—Zz
dZQ _6y e ‘ ZQZQZQX2—82
: s = 3£2X0.
d_y & 6y2
dz? I l Xi— X0
= Gu ey ( X =6X — Z5 + (nonlinear)

0 =4dv+w (— Zoy =475 — €9 + (nonlinear)
: w = dw. Linearization \ €9 = Heg + (nonlinear).




Normal form theory of dynamical systems

ﬁnearization Theorem.(Poincare)
Holomorphic vec. field on C"

2
Jr+ f(z), f~O(z]|")
with the fixed point x = 0.
If eigenvalues of the Jacobi matrix ./ satisfy a certain algebraic

@. Jx + f(x) is transformed into the linear vec. field Jx.

-

condition, then Flocal analytic coord. transformation near x = ()

A




7

Thm. Zlocal analytic transformation defined near each R

movable singularity s.t.
(P1) is transformed into the integrable Hamiltonian system

//:62
N >

[ Cor. Any solutions of (P1) are meromorphic. ]

All Painleve equations are locally transformed
into integrable equations near poles.
(necessary condition for the Painleve property)
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The fixed point (X5, Z5,22) = (2,0,0) is a singularity of
the foliation defined by (P1).

mmm) resolution of sing. by a blow-up.

Y

j IN

—> ?

—>

SLE

+ 0

TR

e
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(d—$:6y2+z (X2:%X22_6_ZQ
$ i — Lo = 279X — €9
\ ;i_y —%, X ég — gngg.
z
(1, = 6u + (nonlinear)
I { ¥ =4v + w + (nonlinear)
affine

k’U'J:5fLU.

We introduce the weighted blow-up by

e — T = Do e — oW
— 2,4 Leraod — a4

The exceptional divisor is CP*(6,4,5)

¢ d 1
ST~ (’Ugwg JE 3U3w§ + 2fw§ — 8u3vgw§ — 1Ou3w§ + 12fu,§w§)
| < d’Ug 8
% — 1 (4_|_U3w4 —|—w5 o 2U3w6) 2
\ d’Ug 4 : ;




= 1
du 3 ('UQ'w—i—?ww + 2w’ — Suvw® — 10uw* + 12u w5)
(PI) -< d’U 4
—w:—(4+vw4+w5—2uw6)
Cdn | i4 '

The coordinate transformation is given by
= %zw — %w2

Ry — -

g <=7
KThe independent value £ is not transformed. \
(%) defines a fiber bundle over Z -space.

e (*) is symplectic —2du A dw = dx A dy

G C(u w)/Zz s an algebraic surface M (z) given by
VZ=UW* + 2:W° 4+ 4W

\( ) defines an symplectic alg. surface C(x’y) U M(z)/




conditions for (P1).

\ Clo) UM(2)

ﬂm. The surface C% ) U M (z) is a space of initial \

i.e. any solutions of (P1) are holomorphic global sections
of the fiber bundle (C(m,y) UM(z)) x Cyp .

Conversely, if a given ODE is polynomial on

, then it is (P1). /

N

=P

Weighted compactlflcatlm
lNelghted blowup

2

e JK

e
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Consider the n-dim polynomial system on C”

dZUr,;

=~ = fi(x1, *, ZTn, 2) + gi(T1, -+, T, 2),
and the truncated one;

dxi

e —fz(azl,---,xn,z).

QAl) The truncated system is quasi-homogeneous;
3 positive integers (p1,---,pn,7) S.t.

f’i()\plxh i) )‘pnxna )‘TZ) ) )\1+pif’i(x17 Tty I Z)
\ /

Lemma. The truncated system is invariant
under the Z_action(s =r+1) ,
(L1, 5 m, Z) (i T s T Sl ) ) =
and has a Laurent series solution
x;(z) ~ci(z — z9) P

271/ s



Consider the polynomial system

dZUr,;

=~ = fi(x1, *, ZTn, 2) + gi(T1, -+, T, 2),
and the truncated one;

dxi

e —fz(azl,---,xn,z).

((Al) i M, N =S ) 4

020 0 (P g - W, X 2] =N TR T e viRe,

\(AS) The full system is also invariant under the Z; action. b

(p1,p2,7) = (2,3,4), (the first Painlevé)
(1,2,2), (the second Painlevé)
(1,1,1), (the fourth Painlevé).




For the system with (A1) to (A3),

dxf,;
dz 25 fZ(xlf e ,xn,z) —|—gZ(CIZ‘1,‘ . -,Q}n,Z),

assume the Laurent series solution

Tl = e I P e o) a;a(z — 20) P .8

{c;}7, is aroot of the equation —p;c; = fi(c1,- -+, ¢y, 0).
Def, The Kovalevskaya matrix is defined by B

H— {gxf; (1, ,Cm,0) —I—piéz-j}n

Eigenvalues of K are called the Kovalevskaya exponents.
Q is always the eigenvalue of K. i

i,J=1




Laurent series solution

o) —clr T aae =) e oz =)

The coefficient a; = (a1 ;,---,am ;)T satisfies
(K —jI)a; = (known number).

Case 1. If j is not K-exp, a; is uniquely determined.
Case 2. If 7 is one of the K-exp,
(2-a) no solution ™= no Laurent series sol.
(2-b) d solution ™= a; includes an arbitrary parameter.

/CIassicaI Painleve test. A
If a given n-dim ODE has the Painleve property, then
there exists a leading coeffi. {¢i};—1 s.t. all of the
associated K-exp are positive integers (except for -1).




Consider the system with (A1) to (A3).
dZI}i

dz

The system is well-defined on the weighted proj. sp.

o fi(xh' ¥ 733717’2) —I_gi(xl’. : °,33n,2),

e CP" (1, -, D1, 8) =C*t 2, UCP (p1s=+ oy il

On each inhomogeneous coordinates, rewrite it as a
n+1 dim autonomous vector field.
We will find fixed points on the “infinity” CP"(py, - -, pn, ).

-
Thm. The eigenvalues of the Jacobi matrix at the fixed
point are given by

\_

~

A =r,s, and n-1 Kovalevskaya exponents (except for -1). °

\_

p
Cor. The Kovalevskaya exponents are invariant under the
action of Aut of the weighted proj. sp s




Application: In Kawakami, Nakamura, Sakai (arXiv:1209.3836),
there is a list of 4-dim Painleve equations. Among them,

Héi# :p% = Q%pl + D2q1Q2 —pzqg + p1p2 + P12 — Bq1 + aqe,

1

HMat — ipl — 31 — 4p2q1q2 — 2p2g5 + pip2 + P12 — B + g

We can conclude that they are actually different ODEs
because K-exponents of them are different.

Both of them have 8 types of Laurent series. K-exp are

441 Mat
For H,,' ", For Hy1 ™,

(4,2,1) x 3 (principle Laurent sol) (4,2,1)
(5,4,—2) x 5 (non-principle)

3

(5,4,-2) x
(8, 4 —5) X
(4,4,—1) x



m. The system has n-para family of Laurent series som

iff there exists a fixed point on the infinity set s.t.
(ii) The Jacobi matrix at the fixed point is semi-simple.

theory of dynamical systems.

given by K-exp. On the blow-up space, the system is
\@in a polynomial system.

(i) All e.values are positive integers (classical Painleve test).

(iii) The system is locally linearizable via the normal form

If (i),(ii),(iii) hold, the singularity of the foliation at the fixed
point is resolved by the weighted blow-up, whose weight is

P

Conjecture. 1 to 1 correspondence:
Painleve equations «== (weight) + (K-exp)




Fa- | ans) | F
P1(E8) | CP3(3,2,4,5) 6
P2(E7) | cP3(2,1,2,3) 4
P4(Es) CP3(1,1,1, 2) 3
P3(Ds) |CP3(—1,2,4,1) | 2
P3(D7) |CcP3(-1,2,3,1) | 2
P3(Ds) |CP3(0,1,2,1) 2
Ps(Ds) |[CP3(1,0,1,1) 2
Ps(D4) |CP3(1,0,0,1) 2

h : The weighted degree of the Hamiltonian.




Eq ' Weights K-exp h
(p17 qi, " yPnyqn,T, 8)

(P1)1| cP3(3,2,4,5) 6 6

(P1)2| CP5(5,2,3,4,6,7) 8,5,2 8

(P1)3|CP"(7,2,5,4,3,6,8,9)| 10,7542 | 10

(P1)nis the n-th member of the first Painleve hierarchy.
(2n-dim Hamiltonian system).
Since r = s — 1 = h — 2, minimal data for a weight is
80101, P, 05 0.
(p,q;h) = (2,3;6) (first Painlevé)
= (1,2;4) (second Painlevé)
= (1,1;3) (fourth Painlevé)
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(a1, a2, --,a9,; h) Integers withl:- a;- as- -+ a9, <h.
Characteristic function

(Th% — )(Tho = 1) (TP — 1)

X(T) o (Ta’l = 1)(Ta2 Wi 1) roe (TaQn e 1)

Consider the following conditions:
(B1) x(7) is polynomial.

(B2) a; +a9,_;—1 =h —1forany;.
(B3) ay=1lor2

Lemma. Whenp, = 1, the weights satisfying the conditioR
(B) are only (2,3;6), (1,2;4), (1,1;3).

\They are weights for (P1),(P2),(P4), respectively. F




@& When n, = 2, the weights satisfying

the condition (B) are only

&

Helor
Coupled P1

7/24+1 Mat
HGCL’I" ? HI

5
HGCL’I“

4-+1 Mat
HGar e ¥

Ay
HNY

\

A

For each weight, there exists the corresponding

Painleve equation with a polynomial Hamiltonian.

Some of them are listed in Sakai et. al (arXiv:1209.3836)).



Weight to Painleve (only 2-dim).
Step 1. Given (2,3;6), (1,2;4), (1,1,3), consider the
generic quasi-homogeneous polynomials
H=cx® + 02y2

H=cz*+ czaz2y + 03y2
H =z’ + o’y + cszy” + cay”
Step 2. Simplify by the symplectic trans. and scaling.
H=a® 442
H = 2% 4+
H = 2%y + zy°



Weight to Painleve (only 2-dim).

Step 3. Versal deformation.
H=2°+y°+ouz+og
H =z*+¢° +%x2 + a3x + oy
H:x2y+xy2 +ﬂxy+a2x+ﬁ2y+a3
Step 4. Replace the parameter a by z if
deg(a) = deg(H) — 2.

Step 5. Remove @ if deg(a) # deg(H) — 1.
H=1+¢y*+2x
H=2x*4+vy*+22° + aszx
H =2’y +ay® + zzy + aoz + Boy
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