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An ODE on the complex plane.

A study of singularities of solutions.
fixed sing.                 sing of 
movable sing.          sing depending on initial cond. 

Painleve property:
ODE is said to have the Painleve property if any  
movable singularities are poles.

Ex.



Thm. (Poincare, Fuchs)
If a first order ODE has the Painleve property, 
it is equivalent to one of 

(i) Solvable.
(ii) Riccati.
(iii) Weierstrass.



Thm. (Painleve, Gambier, 1900)
If a second order ODE has the Painleve property, 
it is equivalent to one of 

(i) Solvable.
(ii) Linear.
(iii) Weierstrass.
(iv) the Painleve equations P1 to P6.





Painleve equations are written as Hamiltonian systems.

Hamiltonian functions are given by

(PJ) :
dx

dz
= ¡@HJ

@y
;

dy

dz
=
@HJ

@x
;

HI =
1

2
x2 ¡ 2y3 ¡ zy;

HII =
1

2
x2 ¡ 1

2
y4 ¡ 1

2
zy2 ¡ ®y;

HIV = ¡xy2 + x2y ¡ 2xyz ¡ 2®x+ 2¯y;

zHIII = x2y2 ¡ xy2 + zx+ (®+ ¯)xy ¡ ®y;

zHV = x(x + z)y(y ¡ 1) + ®2yz ¡ ®3xy ¡ ®1x(y ¡ 1);

z(z ¡ 1)HVI = y(y ¡ 1)(y ¡ z)x2 + ®2(®1 + ®2)(y ¡ z)

¡ (®4(y ¡ 1)(y ¡ z) + ®3y(y ¡ z) + ®0y(y ¡ 1))x:



Lax equations.
:             matrix with a spectral parameter     .

Lax eq. in the sense of spectral preserving: 

Lax eq. in the sense of monodromy preserving: 

It is possible to find new Painleve eqs. by 

the bi-Poisson theory on Lie algebras.

A;B

@B

@z
= [A;B]

n£n

@B

@z
= [A;B] +

@A

@¸

@Ã

@z
= AÃ;

@Ã

@¸
= BÃ:

Integrable system

Painleve property. 
(usually, non-autonomous Hamiltonian system)



is
holomorphic.

The space of initial conditions.

Riccati equation.  Any solution is meromorphic.

(Putting                  ,     satisfies a linear equation.)  

is called the 
space of initial conditions.



The space of initial conditions …
A fiber sp. of a fiber bundle, on which any solutions
have analytic continuations for any 

1-dim: 
Riccati (         ) 
Weierstrass torus (         )
Solvable           (          )

2-dim:
a certain class of alg. surfaces

characterized by the nine points blowup
of          and the Dynkin diagrams    .CP2 D

D

(PI) (PII) (PIII) (PIV)(PV) (PVI)

E8 E7 E6D6 D5 D4

z:

CP1 g = 0

g = 1

g ¸ 2

(PI) » (PIV )
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Newton diagram is the convex
hull of these points in      .
In this example, they lie on the
plane

Newton diagram of ODEs.
Ex: The first Painleve equation.

R3

3x+2y+4z = 5:

8
>><
>>:

dx

dz
= 6y2 + z

dy

dz
= x;

(-1,2,1)
(0,2,0) (0,0,1)

(1,0,0)

(-1,0,2)

(1,-1,1)

Newton diagram           Toric variety
In this example, the associated toric variety is 
the weighted projective space                            .
This space provides a suitable compactification of
the natural phase space;  

C3 = f(x; y; z)g ½CP3(3;2;4;5)



The weighted       action:

The quotient space is called the weighted
projective space .  

A weighted projective space is an orbifold
(algebraic variety) with singularities.

orbifold: 

:  manifold

:  finite group     

C4
0=»=CP3(3;2;4;5)



is defined by                                                          .

(i) When 

The subset                 is homeo. to       

(ii) When 

The subset                 is homeo. to       

[x; y; z; "] » [
x

y3=2
; 1;

z

y2
;

"

y5=2
] := [X2; 1; Z2; "2]:



(iii) The subset                 is homeo. to       

(iv)  The subset                 is homeo. to 

We obtain

Inhomogeneous coordinates: 

In what follows, 
8
><
>:

x = "
¡3=5
1 = X2"

¡3=5
2 = X3"

¡3=5
3

y = Y1"
¡2=5
1 = "

¡2=5
2 = Y3"

¡2=5
3

z = Z1"
¡4=5
1 = Z2"

¡4=5
2 = "

¡4=5
3

(X4; Y4; Z4) = (x; y; z):



Cellular decomposition

The first Painleve equation will be given on  
2-dim weighted proj. space                           is attached 
at “infinity” .

A study of  a singularity (             or             or ). 
A study of the behavior around                       .

(Y1;Z1; "1); (X2;Z2; "2); (X3; Y3; "3); (x; y; z)
2 2 2 2

C3=Z5:

CP2(3; 2;4)

x=1 y =1 z =1
CP2(3; 2;4)



Give the (P1) on the fourth coord .
In the other coordinates,8
>><
>>:

dx

dz
= 6y2 + z

dy

dz
= x;

(Y1;Z1; "1); (X2;Z2; "2); (X3; Y3; "3); (x; y; z)
2 2 2 2

(P1)  is a rational ODE on                         . 
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The coordinate change

Thm. Any solutions of        are meromorphic.

For the proof, suppose that a sol. of          has a singularity

at finite              ; 

It is convenient to rewrite as a 3-dim dynamical system as

(PI)

x(z)!1 y(z)!1

0
@
X2

Z2

"2

1
A=

0
@
xy¡3=2

zy¡2

y¡5=2

1
A :

z = z¤

8
<
:

_X2 = 3
2
X2
2 ¡ 6¡ Z2

_Z2 = 2Z2X2 ¡ "2
_"2 = 5

2
"2X2:

X2 ! 2

Z2 ! 0

"2 ! 0:

This system has a fixed point                  (X2;Z2; "2) = (2;0;0):

or as

z! z¤:as

z! z¤:



Poincare’s linearization theorem.

J =

0
@

6 ¡1 0

0 4 ¡1

0 0 5

1
A(X2; Z2; "2) = (2;0;0):

8
<
:

_u = 6u¡ v

_v = 4v + w

_w = 5w:

d2y

dz2
= 6y2 + z:

The solution converges to the fixed point:

8
<
:

_X = 6X ¡Z2 + (nonlinear)
_Z2 = 4Z2 ¡ "2 + (nonlinear)

_"2 = 5"2 + (nonlinear):

8
<
:

_X2 = 3
2
X2
2 ¡ 6¡ Z2

_Z2 = 2Z2X2 ¡ "2
_"2 = 5

2
"2X2:

X =X2 ¡ 2:

Linearization



Normal form theory of dynamical systems

Linearization Theorem.(Poincare)
Holomorphic vec. field on      

with the  fixed point             
If eigenvalues of the Jacobi matrix     satisfy a certain algebraic 
condition, then    local analytic coord. transformation near 
s.t.                       is transformed into the linear vec. field       . 

Jx+ f(x); f »O(jjxjj2)
x= 0:

J
x = 0

Jx+ f(x) Jx



Thm. local analytic transformation defined near each 
movable singularity s.t. 
(P1) is transformed into the integrable Hamiltonian system

Cor. Any solutions of (P1) are meromorphic.     

All Painleve equations are locally transformed
into integrable equations near poles.
(necessary condition for the Painleve property)
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The fixed point                                       is a singularity of 
the foliation defined by (P1).

resolution of sing. by a blow-up.

(X2; Z2; "2) = (2;0;0)

z

x; y

2-dim mfd.

z



affine

We introduce the weighted blow-up by

The exceptional divisor is 

8
<
:

_X2 = 3
2
X2
2 ¡ 6¡ Z2

_Z2 = 2Z2X2 ¡ "2
_"2 = 5

2
"2X2:

8
><
>:

dx

dz
= 6y2 + z

dy

dz
= x;



The independent value       is not transformed.
defines a fiber bundle over       -space.

is symplectic

is an algebraic surface               given by

defines an symplectic alg. surface                            .

8
<
:

x = uw3 ¡ 2w¡3 ¡ 1
2
zw¡ 1

2
w2

y = w¡2

z = v:

z

The coordinate transformation is given by

¡2du^ dw = dx^ dy
C2
(u;w)=Z2

V 2 = UW4+2zW3+4W

M(z)

C2
(x;y) [M(z)

z



Thm. The surface                              is a space of initial 
conditions for (P1).
i.e.  any solutions of (P1) are holomorphic global sections 
of the fiber bundle                                           .

Conversely, if a given ODE is polynomial on
, then it is (P1).  

(C2
(x;y) [M(z))£C(z)

C2
(x;y) [M(z)

C2
(x;y) [M(z)

z
z

x; y C2
(x;y) [M(z)

Weighted compactification

Weighted blowup
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Consider the n-dim polynomial system on 

and the truncated one;

(A1)  The truncated system is quasi-homogeneous;
positive integers                         s.t.

Lemma. The truncated system is invariant 
under the      action                    ,

and has a Laurent series solution 

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z) + gi(x1; ¢ ¢ ¢ ; xn; z);

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z):

9 (p1; ¢ ¢ ¢ ; pn; r)
fi(¸

p1x1; ¢ ¢ ¢ ; ¸pnxn; ¸rz) = ¸1+pifi(x1; ¢ ¢ ¢ ; xn; z):

Zs
(x1; ¢ ¢ ¢ ; xm; z) 7! (!p1x1; ¢ ¢ ¢ ; !pmxm; !rz); ! := e2¼i=s:

xi(z) » ci(z¡ z0)
¡pi :

(s = r+1)



Consider the polynomial system

and the truncated one;

(A1)
(A2)  
(A3)  The full system is also invariant under the      action.

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z) + gi(x1; ¢ ¢ ¢ ; xn; z);

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z):

gi(¸
p1x1; ¢ ¢ ¢ ; ¸pnxn; ¸rz) = o(¸1+pi); ¸!1;

Zs

(p1; p2; r) = (2; 3; 4); (the ¯rst Painlev¶e)

= (1; 2; 2); (the second Painlev¶e)

= (1; 1; 1); (the fourth Painlev¶e):

fi(¸
p1x1; ¢ ¢ ¢ ; ¸pnxn; ¸rz) = ¸1+pifi(x1; ¢ ¢ ¢ ; xn; z):



For the system with (A1) to (A3),

assume the Laurent series solution

is a root of the equation                                        .

Def. The Kovalevskaya matrix is defined by

Eigenvalues of      are called the Kovalevskaya exponents.
-1 is always the eigenvalue of    .

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z) + gi(x1; ¢ ¢ ¢ ; xn; z);

xi(z) = ci(z¡ z0)
¡pi + ai;1(z¡ z0)

¡pi+1 + ai;2(z¡ z0)
¡pi+2 + ¢ ¢ ¢

fcigni=1 ¡pici = fi(c1; ¢ ¢ ¢ ; cn;0)

K =
n @fi
@xj

(c1; ¢ ¢ ¢ ; cm; 0) + pi±ij

on
i;j=1

K

K



Laurent series solution

The coefficient                                       satisfies

Case 1. If    is not K-exp,      is uniquely determined.
Case 2. If    is one of the K-exp,

(2-a) no solution           no Laurent series sol.
(2-b)    solution                  includes an arbitrary parameter.

Classical Painleve test.
If a given    -dim ODE has the Painleve property, then
there exists a leading coeffi.               s.t. all of the 
associated K-exp are positive integers (except for -1).  

xi(z) = ci(z¡ z0)
¡pi + ai;1(z¡ z0)

¡pi+1 + ai;2(z¡ z0)
¡pi+2 + ¢ ¢ ¢

aj = (a1;j; ¢ ¢ ¢ ; am;j)T

j aj

(K¡ jI)aj = (known number):

j

9 aj

n

fcigni=1



Cor. The Kovalevskaya exponents are invariant under the 
action of Aut of the weighted proj. sp   

Thm. The eigenvalues of the Jacobi matrix at the fixed 
point are given by

and n-1 Kovalevskaya exponents (except for -1).

Consider the system with (A1) to (A3).

The system is well-defined on the weighted proj. sp.

On each inhomogeneous coordinates, rewrite it as a 
n+1 dim autonomous vector field.
We will find fixed points on the “infinity” 

dxi

dz
= fi(x1; ¢ ¢ ¢ ; xn; z) + gi(x1; ¢ ¢ ¢ ; xn; z);

M :=CPn+1(p1; ¢ ¢ ¢ ; pn; r; s) =Cn+1=Zs [CPn(p1; ¢ ¢ ¢ ; pn; r):

CPn(p1; ¢ ¢ ¢ ; pn; r):

¸= r; s;

M:



Application: In Kawakami, Nakamura, Sakai (arXiv:1209.3836), 

there is a list of 4-dim Painleve equations. Among them, 

We can conclude that they are actually different ODEs 
because K-exponents of them are different.

Both of them have 8 types of Laurent series. K-exp are

H4+1
Gar = p21 ¡ q21p1 + p2q1q2 ¡ p2q

2
2 + p1p2 + p1z¡¯q1 +®q2;

HMat
II =

1

2
p21 ¡ q21p1 ¡ 4p2q1q2 ¡ 2p2q

2
2 + p1p2 + p1z ¡ ¯q1 +®q2

For           ,
(principle Laurent sol) 
(non-principle)

H4+1
Gar

(4;2;1)£ 3

(5;4;¡2)£ 5

For           ,HMat
II

(4;2;1)£ 3

(5;4;¡2)£ 2

(8;4;¡5)£ 2

(4;4;¡1)£ 1



Thm. The system has n-para family of Laurent series sol,  
iff there exists a fixed point on the infinity set s.t.
(i) All e.values are positive integers (classical Painleve test).
(ii) The Jacobi matrix at the fixed point is semi-simple.
(iii) The system is locally linearizable via the normal form 

theory of dynamical systems.

If (i),(ii),(iii) hold, the singularity of the foliation at the fixed
point is resolved by the weighted blow-up, whose weight is
given by K-exp. On the blow-up space, the system is
again a polynomial system.

Conjecture. 1 to 1 correspondence:
Painleve equations           (weight) + (K-exp)



Eq. Weight K-exp h

P1(E8) 6 6

P2(E7) 4 4

P4(E6) 3 3

P3(D8) 2 2

P3(D7) 2 2

P3(D6) 2 2

P5(D5) 2 2

P6(D4) 2 2

CP3(¡1;2;4;1)

CP3(¡1;2;3;1)

CP3(0;1;2;1)

CP3(1;0;1;1)

CP3(1;0;0;1)

(p; q; r; s)

: The weighted degree of the Hamiltonian.



Eq. Weights K-exp h

(P1)1 6 6

(P1)2 8,5,2 8

(P1)3 10,7,5,4,2 10

CP5(5;2;3;4;6;7)

CP7(7;2;5;4;3;6;8;9)

(p1; q1; ¢ ¢ ¢ ; pn; qn; r; s)

(P1)n is the n-th member of the first Painleve hierarchy.
(2n-dim Hamiltonian system).
Since                                           minimal data for a weight is
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integers with                                             .

Characteristic function

Consider the following conditions:

(B1)            is polynomial.

(B2)                                         for any   .

(B3)              1 or 2

(a1; a2; ¢ ¢ ¢ ; a2n;h) 1 · a1 · a2 · ¢ ¢ ¢ · a2n < h

Â(T ) :=
(Th¡a1 ¡ 1)(Th¡a2 ¡ 1) ¢ ¢ ¢ (Th¡a2n ¡ 1)

(Ta1 ¡ 1)(T a2 ¡ 1) ¢ ¢ ¢ (T a2n ¡ 1)

ai+ a2n¡i¡1 = h¡1 i

a1 =

Lemma. When          , the weights satisfying the condition 
(B) are only    
They are weights for (P1),(P2),(P4), respectively.

n= 1

(2;3; 6); (1;2; 4); (1;1; 3):

Â(T )



Prop. When           , the weights satisfying 

the condition (B) are only  

Coupled P1

,

For each weight, there exists the corresponding 

Painleve equation with a polynomial Hamiltonian. 

Some of them are listed in Sakai et. al (arXiv:1209.3836)).

n= 2

(2;3;4;5; 8);(a1; a2; a3; a4;h) =

(2;2;3;3; 6);

(1;2;3;4; 6);

(1;2;2;3; 5);

(1;1;2;2; 4);

(1;1;1;1; 3);

H5
Gar

H4+1
Gar HMat

II

H
9=2

Gar

H
7=2+1

Gar ; H
Mat
I

HA4

NY



Weight to Painleve (only 2-dim). 

Step 1.  Given (2,3;6), (1,2;4), (1,1;3), consider the 
generic quasi-homogeneous polynomials 

Step 2. Simplify by the symplectic trans. and scaling.

H = c1x
3 + c2y

2

H = c1x
4 + c2x

2y+ c3y
2

H = c1x
3 + c2x

2y+ c3xy
2 + c4y

3

H = x3 + y2

H = x4 + y2

H = x2y+ xy2



Weight to Painleve (only 2-dim). 

Step 3.  Versal deformation.

Step 4. Replace the parameter     by    if 

Step 5. Remove     if  

H = x3 + y2 +®4x+®6

H = x4 + y2 +®2x
2 +®3x+®4

H = x2y+xy2 +®1xy+®2x+¯2y+®3

® z

deg(®) = deg(H)¡ 2:

H = x3 + y2 + zx

H = x4 + y2 + zx2 +®3x

H = x2y+xy2+ zxy+®2x+ ¯2y

® deg(®) 6= deg(H)¡ 1:
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