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{21, 29, 23, 24}. Then the Peilzrmf types can be defined as fDllUWSZ:

( Type O — Weyl tensor is zero

TypeI  — All roots are different

{ Type D — Two pairs of roots coincide, 2y = 29 % 23 = 24 (2.15)
Type II — Two roots coincide, 2; = 2o # 23 # 24 # 23 '
Type III — Three roots coincide, 27 = 29 = 23 # 24

| Type N — All roots coincide, 2y = 20 = 23 = 24.

These four roots define four Lorentz transformations. By means of eq. (2.13) such
transformations lead to four privileged null vector fields I, which are the ones
obtained by performing these transformations on the vector field [ of the original

null tetrad:

Il > U=l+zm+zm+|zn, ic{l,2,3,4}. (2.16)



null infinity .. Let -y be a null geodesic in a spacetime {M, gﬂb) from a point p
parameter A. Then the theorem states that, as A tends to infinity:

C —G{“‘l’ld+c‘£ﬂ“+gﬂ”'+ci+o 1
bed = Ty A2 AS M B

where C .4 is the Weyl tensor, and abstract index notation is used. Moreover

Ci:id is type N, Cﬂd is type llI, Cﬂd is type Il (or 11-11) and Cﬁd is type I.

Figure 3.3: According to the peeling theorem, as we approach the null infinity of an asymptot-
ically flat space-time the Petrov type of the Weyl tensor becomes increasingly special. The blue
arrows represent the principal null directions of the Weyl tensor, while the red axis represents
the null direction along which null infinity is approached.
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ds® = f1[e?(dp® + d2°) + p°dp?] — f(dt — wdyp)®

Here p, ¢, z and t are canonical Weyl coordinates and time, respectively; f(p, 2)
and w(p, z) are unknown functions to be determined from the field equations.
The vacuum Einstein equations are given by

Rir =0,

where R;. is the Ricci tensor .
Therefore we obtain all the Einstein equations in the case of a stationary
symmetric gravitational field outside the sources:

fAf= (V)= fp2(Vw)?
?(pr_Q?w) =0,

= 1P G = (G = Fo (G = (G
oy 1 ., 0f0f 4 0w Ow
8z _f( —_f Bp 9z

The operators ? and A defined by the formulae

vV = 702 + ?02
p

0z

02 10 02
A=V?= ——4+ -4+ —
v 3p2+p3p+32:2’

(2.1)

, 7(p, 2)

axially

(2.2)

(2.3)

(2.4)

(2.5)



1. If we switch from the rotation potential w to the new potential ® by the formulae

Oow p0® Odw  pOod

b j = 2.13
dp f?0z 0Oz f? op (2.13)

or, in the prolate ellipsoidal coordinates,
Ow  ko(1—y")0® Ow = ko(z”—1)0® (2.14)

or f? oy’ Oy f2 oz’

we obtain the following field equations:

fAf= (V2 - (Vep, V(Ve) =o. (2.15)



V=4, f'Vo=B. (2.16)
In this case, from we obtain the following set of four first-order differential equations

for X and

divA = —?2, divB = (X : ?),
rot A = 0, rot B = —[Z X ?], (2.17)

This form of the field equations was developed in [28], [29]. In the Weyl canonical

coordinates we can rewrite 2.16 as

1o, 1y
Al—fapa AQ—faZa
109 10

B, = Fop’ By = 7oz (2.18)

In this case, using 2.17 and 2.18, we obtain

10 DA
= (pA1) + 5 = —(B} + Bj),

pOp 0z
10 0B
;%(pBl) 3—2’2 = AlBl AQBQ, (219)



Introducing the Ernst complex potential

e=f+1P (2.22)
gives us, from 2.15] the equation

(e +€")Ae = 2(?8)2, (2.23)

where €* is the complex conjugate of ¢.
A transformation of 2.23

e=(E—-1)(E+1), (2.24)

leads to one more form of the equations for a stationary axially symmetric gravitational
field:

(66" - 1)AE =267 (Ve)? (2.25)
For Equation 2.23 we can prove the following theorem :
Theorem 1. If £ is a solution of equation, then the functions

iAo+ Beg ., —iAy+ Bge*
£ = —, &' = —, (2.26)
C{) +1DoE CO — 1 Dge*

where Ay, By, Cy and Dy are arbitrary real constants subject to the constraint AoDy +
BoCy # 0, also satisfy Equation 2.23

Its proof can be obtained immediately by substitution of into the corresponding Equa-
tion in 2.23.



2. The substitution f = p/F in equations gives us the following equations:

FAF = (VF)? + (Vw)!, V(F?Vw)=0. (2.33)
The set of two second-order differential equations can also be reduced to a set of four
first-order differential equations.
If we introduce the notations
FIVF=A, F'Vw=B, (2.34)
we obtain (2.17).
Introducing the functions
e1=F+4+w e =F—w, (2.35)
we rewrite Equations (2.33) in the symmetric form

(61 + €2)Ae; = 2(?51)2,
(61 + £2)Aes = 2(Vea)2, (2.36)

For the field equations and one can prove theorems, similar to and. So, for equations we
have the following theorem.
Theorem 2. If &1 and € are solution of equations , then the functions



The four types of solutions representing the exterior gravitational fields of
bound masses are classified as follows:

) . rotation )
Schwarzshild metric ——  Kerr metric
(0#0, w=0=0) (00, w0, 0=0)
ldeformation ldeformation
) rotation _ .
Weyl metric ——>  T-S metrics
(0#0, w=0, 0+0) (040, w0, ¢0).

In the above diagram, p, w and ¢ denote divergence, rotation and shear of bunch
of null geodesics in the corresponding space-times.® As seen from the above

~ - — =



In the cases of no rotation, many solutions for & are easily obtainable, which derive
the Weyl metrics. In these solutions there exists an interesting series of solu-
tions''® with a positive parameter ¢, expressed in the form

- (x+1)+ (z—1)°
(z+1) — (z—1)*’

where prolate spheroidal coordinates (z,y) are used in place of cylindrical co-
ordinates (p, 2), and the two coordinates are related as follows,

o=k -1)"A—y")", z=kzy. (2-9)

The metrics obtained from the solutions (2-8) are regarded as representing the
gravitational fields of axi-symmetric masses, whose deformation is described by
0. In particular, in the case d=1 the Schwarzshild metric is obtained and it

(2-8)



B
where o« and 8 are complex polynomials of z and y. Substituting Eq. (2-10)
into Eq. (2-2) and using the coordinates (x,y), we obtain the basic equation as

| &= 1) (aa - g% (2% ~a28) + {2z (aa* ~ g —2(2~ 1)

0x® x

il

4o} 0B } 4o} 0B ]
X (¥ & _ox 9B\ [ (0 5 0f
(@ oz " ax) <0x3 “aa)
— [the same expression replacing x by y]=0. (2-11)

The solutions which have been obtained are as follows:

i)  Erast’s solution™ or the T-S solution Sfor 0=1
a=pxr—iqy  and g=1. (2:12)

where p and g are parameters relating to each other as p*+q¢*=1. In the case
of no rotation, p=1 and ¢=0. This solution gives the well-known Kerr metric.

ii) the T-S solution for § =29

a=p'z'+g'y'—1—2ipqzry (=’ —y*)
and |
B=2px(x*—1) — 2igy (1 —4?). (2-13)
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Double-Kerr

The Ernst potential & of the solution obtained by Kramer and Neugebauer 1s

Ss S:  S» S
11 1 ]
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P 2D
1 ] ] 1
K K K K

KS: K:S: KiS: KiSs

where

szeiwm?’m, Fm:[ﬂ2+(Z_Km)2]1f2, (2'2)

wn and Kn are real parameters and m=1, ---, 4. Equation (2-1) is written also



1898 K. Oohara and H. 5ato

5,=175 Zpel 2 a=l TR

-?|=':|

Fig. 2. The contours of the infinite redshift surface of the same metre with Fig. i,
i. e, parallel case, except dif ferent valoes of £ lke 125, 1.2 7T 5, B amd 4.
The =1/ and z0=0 cases correspond to the one Kerr metric and the
Tomimatsu-Sate & =2 metnc respectively.
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‘I'he K-U solution 1s a vacuum speclalization ot the nine-parameter electrovac ra-
tional function solution considered in the paper3?) and, therefore, its metric functions
f, 7, w are defined by the following expressions:*

E.E_+E.E_

2y

f=

2E_FE_

I

E.E_+E.E_
ZK()K()T‘L]IT‘% ’

4Im(E_G)

T "E.E_+ELE_

where r; = \/ p? + (z — a;)?, the determinants E+ and G have the form

1 1 1 (z—a1)/r1 (z—a2)/re
+1
+1
0
0
0 mta—2 retas—z p*/r1 p?/ra
-1
-1
0 M
0
( r1 79 B r%
a1 —pB1 - (1 — B1)?
1 o r?
ay— B2 oz —f2 (a1 = B2)?
1 _ 1 _ T% 0 [ 1_ :|
a1 —p1 az—[ Oay [ (a1 — B1)r1
1 1 , d 1
\a-F a@-F | om [(011 - 52)?“1]

2
U

(ag — B1)?
T3

(g — B2)?
1

5 0

[(012 — Bu)r2

r
2 8012

[
20a | (g — Bo)r2

(A-1)

|
| )

(A-2)

and the determinant K is defined by the 4 x 4 matrix obtainable from M by simply
setting r; and ry to unity.



In this paper, we focus on the 6 = 2 Tomimatsu-Sato metric. The properties of the corresponding
spacetime that have been found so far are summarized as follows |6, 7|.

Ring singularity: This spacetime has a ring singularity at the root of B(z,y = 0) = 0. (The cross in
Figure

Ergosphere: The timelike Killing vector becomes null at the roots of A. There are two single roots for
x > 1 (The dotted lines in Figure[1), the smaller of which coincides with the ring singularity.

Causality violation region: Since ¢ is the periodic angular coordinate, this spacetime has closed time-
like loops in the region with negative g44. (The shaded portion in Figure

Directional singularity: This metric has directional singularities at the points (p, z) = (0, +0), where
the value of a curvature invariant has different limits when the point is approached from different
directions. (The two filled circles in Figure(1)

The nature of the surface z = 1: In the Kerr case, x = 1(p = 0, |z| < o) surface is an event horizon.
However, in the 6 = 2 Tomimatsu-Sato case, this is not the case. Because the induced metric is
Lorentzian and two Killing vectors 0; and 0, become parallel there, z = 1 surface cannot be a null
surface.



ring singularity

|/

ergosphere

15 2

FID =

Figure 2: The ergosphere (tan) and the re-
gion with closed timelike curves (CTCs) (pur-
ple) when p = 0.8. The boundaries of the er-
goshere are lines § = constant.

1
P
c

Figure 3: Contour plot of the Kretchmann
scalar tanh(0 = 4R, 4,6 R*#7?) in the (p, z) plane
for p = 1/3. The centre of the flower-shaped
region is the ring singularity.



Kodama-Hikida 2003

Two poles

Two degenerate Killing horizons

Y 0.60.6 04

We have investigated the structure of the § = 2 Tomimatsu-Sato spacetime. By introducing an appro-
priate coordinate system, we have shown that the two points in the Weyl coordinates, which have been
recognized as the directional singularities, are really two-dimensional surfaces and that these surfaces are
horizons. We have also shown that each of the two horizons has the topology of a sphere. This result is
rather surprising because the § = 2 Tomimatsu-Sato solution is obtained from the Neugebauer-Kramer
solution representing a superposition of two Kerr solutions, as the limit that the centers of two black
holes coincide [9]. This may indicates a new possibility for the final states of gravitational collapse.
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-uclidon metric
DEREHHE TKerr

Stationary multiple euclidon solutions to the vacuum
Einstein equations

Aleksandr A. Shaideman, Kirill V. Golubnichiy

http://arxiv.org/abs/2502.03675v1
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fAf = (V) —(Ve), fA®=2VaV/,

Ow  p 0P a_w__ﬁa_q> (1)
Op f20z" 0z  f20p '

(f°, ®° wY) - we call the seed solution.

One of the simplest solutions of Equation (4.1) is the one-stationary euclidon solution

(z —21) + \/p2 + (2 — z1)? tanh Uj

fE — Cl 3
\/P (2 — 21)?
C, cosh U, 2 (42)
NS CEE; L

Wg = C] + Cg,

(z—21) + \/p2 + (2 — 21)? - tanh Uy cosh Uy

where Uy, C1, Cs, and C3 are arbitrary constants.

Straightforward calculations show the solution (4.2) turns all components of the Riemann-
Christoffel curvature tensor to zero. Thus, it makes sense to call the solution (4.2) a
euclidon solution. One can say that it characterizes some relativistic noninertial frame
of reference in flat space-time. Nevertheless, the solution (4.2) allows one to generate
solutions describing curved space-time.



z—z1 + Rtanh U

f = 7 ;
. R
¢ = | ,
focosh U 0
5 fo(z — z1)coth U e

(z — z1)coshU + Rsinh U

Only U remains to be determinated.



fo = folr, 2), ®o =0, wo = 0.

fg = BX, (18)
the Einstein equations (4), (5) reduce to
Ay = 0. (19)

For such an harmonic function y, the solution (17)
is said to be Lewis-type [3]. Hence, the system (9) in [1]
permitting one to determine the U function reduces to

U,r = @1X r + az2X z, (20)
U, = —asx,,+aix,., (21)
where
z2— 2 r 5 5
) = R ag_ﬁ, a; +a; =1. (22)



= In[m (A + D+ 1], (29)

where y obeys (19).
The system (20)-(21), determining the potential
U(A, i), now takes the form

| K
U\ A= i XA+ N g X, i (30)

H
Ujp = — XA+ T Xu 31
[ A }l—j,t H ( )



Hence, we find by integration
U =1In [—1+A ]:
ag(l+ p)

where ag is a constant. On the other hand, (23) be-
comes, 1n prolate spheroidal coordinates,

(A= IJ)[(’\Q — DU+ (1 - IJZ)U,W]
=2(Ap = 1)(Ux+U,) =0, (33)

(32)

and 1t can be easily checked that (32) is a solution to

(33). Egs. (14)-(15), giving f and ®, now become

App— 1+ (A —p)tanh U
A+Dp+1
- | A—

(A n) = (A+ 1)(pp+ 1) coshU (39)

) = (34)
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. As the negative density perturbation grows,
the shock wave is generated surrounding this
region and propagates outwards accumulating
the expanding matter in the flat universe
(Suto et al., 1984a).
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Fig. 1. The motion of the shells denoted by yx is shown using the coordinate y defined
by (3+1), for two cases of (a) n=c2 and (b) n=1.5takit z4»y—vs5vr n=2 the
shell crossing occurs. |
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t. and y. where Y'=0. After that epoch, the

mass in the hatched regicn has been compressed
into a thin shell.
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Fig. 3. Schematic diagram for global structure of the closed universe with one void.
E and C denote “E-region” and “C-region” réspectively and B is the boundary
surface of y=y.. In (a), the {=const hypersurfaces are depicted by solid lines
and Y =const surfaces are shown by dotted lines, and in (b), the r=const
hypersurfaces are depicted. The future singularity is shown by a wavy line.



We introduce the Gauss coordinates in the neighbourhood of & in such a manner as
ds* = hapdE°dE" — d2° (2+5)

with z=0 on 2. Then, it is found that I’Z=IZ=I%=00n 2. In this coordinate system,
the Ricci tensor takes a form

EEF%HI@,F; OFETE AR o) . (2+6)

Substituting this relation into the Einstein equation Gu= —8xG T, and taking the integral
over the Gauss coordinate through the infinitely thin shell, we get the relation

Ky Kio = —~82G( Sas = 4-hasS) 2-7)
with

Ka=1mI5,=2""(ha[02)* (2-8)
and

Sao=lim | Tuudz, (2-9)

where we have used a boundedness of the bracket term in (2-6).



as n, the hypersurface X is called “timelike” if n-n<0 and “spacelike” if n-n>0. In the
conventional (1+3)JADM formalism, the hypersurface is taken to be spacelike. In the
present problem, however, we consider a timelike hypersurface and the metric on X' can
be introduced as

dl*= hasdE"dE® (2-2)

Using the Gauss-Codazzi relation, the Einstein tensor (7w is written in terms of
extrinsic curvature fa and intringic curvature *R on X as

DG i n’ =R — KK+ K* (2-3)
and
GpuEﬁpnu=Hxﬁb_K|u . (2'4}

where Kon= ha"ho“nu, v, ha"=02"/95% on ¥ and | denotes the covariant derivative in the
space (2-2).



—— Extrinsic Curvature of Sphevical Shell -
Spherically symmetric spacetime is written as
ds* = e¥di* — &' dy*— v*dQ? (A-1)

with »(», £), A(7, t) and d2*=d6*+sin*6de®. The metric of the hypersurface 5, which is
an evolutionary locus of the spherical shell, is written as

di*=dr*— p(r)*dQ*, (A-2)

where r is the proper time of the shell and 47p° is a surface area. Due to the spherical
symmetry, S.*=35:" and K*=FK3', where we take as a=0, 2,3 for t, 8, ¢, respectively.
For the metric form of (A-1), the extrinsic curvature is computed as”

K=o BBt 2 v
Jotte

+ Ao (A-3)
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Fig. 1. Metric junctions among the Minkowski
metric (M), the Schwarzschild metric (S) and the
de Sitter metric (DS). The inner space where
the center of spherical symmetry exists is written
in the left like M{“inner”}-S(“outer”"). For each
junction between the metrics, further differences
specified by @ and g are classified into types [
~IV. For each case, schematic pictures of the
metric junction are given, where the “inner”
space 1s written in the left.

The positive energy condition of the shell,
(3+1), excludes some junctions like M-M, S5-M and
D5-M, those are not shown here. The tvpe IIL
cases drawn in the bracket [ ] are also excluded
by the condition (3-1).



If we write the metric of M as
ds’=dT*—dR*— R*dQ*, (4+6)

the proper time 7 in (A-2) relatesto T as dr*={1—(dR/dTY}dT*? and (dR/dT)=(dr/dT) i
=p/y6*+1. Thus, the relation (4-5) is rewritten also

1 1 Gms
mR(JI—{chMT}“ 1) 5 (ms—m1g) .

‘The second term on the left-hand side is interpreted as a gravitational self-energy of the
shell. If s> m,, the maximum radius is obtained from (4-5) as

Ging®
Pmax = m . ' (4+7)

It ms<mg, p can take any values.
Subtracting (4-2) from (4-5), we get

Eﬁuutﬁzﬁ' 1-— ?'g,n'fﬁ —{Efﬁ!m‘fmﬁ- G?ﬂi."‘lﬂ} + (4 E)

Then, Guu=0 for 2mgp= Gm,® respectively. Allowed region of motion on the p-(ms/m,)
diagram is depicted in Fig. 2. As seen from this figure, the case of My < Wis < 2Mg
corresponds to the type I junction in Fig. 1 and the case of m.>2m, does to the type II
junction. For ms=2n1y, Omax= ¥y and the both cases coincides.

T



O k= | 1 1 | —
| 3 3 mg/ My
Fig. 2. For the dust shell at the Minkowski-
Schwarzschild junction, allowed region of motion
on the p-{msfmg) diagram is given, The bold
line shows ome: and the hatched region is a forbid-
den region of motion. The dotted line denotes
ofry={mzmy)* /4, which separates the sign of
ga. Lhe branch A is included in the type I
junction and the B does in the type II. This

figure as well as Fig. 2 has a meaning only for
O Vg,
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It we set in

1— a2 bo — Ay
tanh Uy = tanh U = ——2, co= —, 5.13
0 0 1+ a% 0 1+ aobo ( )
then, accordingly, a stationary two-Euclidean solution is constructed, which coincides
with the Kerr-NUT solution in form:

0 ko(zy — 1) + ko(z — y) tanh U(z, y, a0, b0)  As
f= f2,—,+ = 0 — 5
f1,+ By
k (x —y) Cs
— &0 _ M 0o _ X=
P TR cosh UGy a0 b)) T By
A2 = (.’L‘2 — ].)(]. + agb())2 + (y2 — ].) (bg — G,())Q,
BQ = [(]. + aobo)ﬂf? + (]. — aobo)]2 + [(b[) — ag)y + (bo + a(])]2 3 (514)

CQ =2 [(bo + ao)(]. + aobo)l' - (bo - CLQ)(]. - aobo)y] .
If we set ag = —bg, then (5.14) yields the Kerr solution.



7 Three- und four- stationary euclidon solution

1-1. Let us consider superposition (6.3) of the stationary two-euclidon solution (6.2) whith
the stationary own-euclidon solution (ff_, @7 _).
This stationary three-euclidon solution is easy to rewrite as

ko(zy — 1) + ko(z — y) tanh U(a, b)

f = fg,—,+,— = fo 9 (7-1)
27+1_
1 ko(z—y)

=0 , = P : 2
S f2,_ coshU(a,b) T Wy s (7.2)

where ko(zy + 1) + ko(z + y) tanh U

Ty + 1) + T+ anh U*®
foi- == ’ T (7:3)

Ji- ’
) 1 0

. 0 (x+y
_ . o, .
Wt~ fl,— xy + 1+ (z+vy)-tanhUe coshU® L







In order to make a nonlinear ” composition” of the solution with the seed solution,
we use the method of variation of parameters. We shall consider C, C, C3 and Up in
the solution to be functions

http://arxiv.org/abs/2302.11888v1

13
C1— f%p,2), Cy—wp,2), Cs3— ®p,2), Us— Upz). (4.3)
In this case we have
(z —2z1) + /P> + (2 — z1)* tanh U(p, 2)
f: f-o ?
\/p (z — 21)? 0

fO COShU(p, ) +CU (pa Z),

w=f Vet a) U T (4.4)

(z — 21) + /p? + (2 — z1)%tanh U(p, 2) coshU(p, z)

+2%(p, 2).



1-1. If we choose

=1, " =uw’=0, (5.7)
in this case we obtain from
kolx —y
f=f_=ko(zy—1)+ko(z —y)tanh Uy, =97 = gc()TUo)’ (5.8)
(z —y) 1

YT Zy— 1+ (z — y)tanh Uy cosh Uy’

where U = U, = Up.
1-I1. If we choose
F0 = fﬁ_’ 0 — cp‘l),_’ (5.9)

in this case we obtain from

0 ko(zy — 1) 4+ ko(z — y) tanh U
f=h--= fP ’ == 7 f9 coshU
1,— 1,—

where U = Uy _ _ = In § = const,

]_—|— tanh UO
= —\/1 “tanh U, tanh U = tanh Uy, coshU = — cosh U,,

a
b
and

f:fgy_,_ =1, ®=w=0. (5.10)



ko(z +y)
O =F, =ko(zy +1) + ko(z + y) tanh Uy, = = “cosn T (5.11)

(x4 y) 1
WO =0 — :
1,+ Ty +1+ (m + y) - tanh UO cosh U()




	スライド 1: 相対論数学との出会い 
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15: Varenna Como湖  Fermi-summer-Schoole  1975
	スライド 16: Dr. Chandrasekhar 83
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25: Logonov
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58
	スライド 59
	スライド 60
	スライド 61
	スライド 62
	スライド 63
	スライド 64
	スライド 65
	スライド 66
	スライド 67
	スライド 68
	スライド 69
	スライド 70
	スライド 71
	スライド 72
	スライド 73
	スライド 74
	スライド 75
	スライド 76: Pope
	スライド 77
	スライド 78
	スライド 79

