第70回 ENCOUNTERwithMATHEMATICS

パーシステントホモロジーとその応用

平岡 裕章 Yasuaki Hiraoka

東北大学 材料科学高等研究所(AIMR) 理化学研究所AIPセンター 物質・材料研究機構(NIMS)トポロジカル解析グループ

> JST CREST 内閣府 SIP革新的構造材料 JST イノベーションハブMI^2I NEDO 超超プロジェクト

今日と明日の内容

平岡裕章(東北大):パーシステントホモロジーとその応用

- 浅芝秀人(静岡大):クイバーの表現論とパーシステントホモロジー
- 白井朋之(九州大):確率論とパーシステントホモロジー
- 福水健次(統数研):パーシステント図に対する統計的機械学習
- 大林一平(東北大):位相的データ解析ソフトウェアHomCloudの 紹介およびパーシステント図の逆問題について

1. 背景

データの幾何モデル パーシステントホモロジーの導入 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

1. 背景

データの幾何モデル パーシステントホモロジーの導入 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Background : Shape of Data

Data-driven science studies potential values of big and complicated data by machine learning and Al

develop mathematical theory for shape of data

Idea : Shape of Data

Input data

resolution of data

- fattening point data
- changing resolution for multiscale analysis
- characterization using birth & death of holes

(ref. Edelsbrunner, Mucke)

Note: 2D histogram uncovers further geometry

1. 背景

データの幾何モデル
 パーシステントホモロジーの導入
 代数的研究(クイバーの表現論)
 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Čech complex and nerve theorem

- Input point cloud $X = \{x_i \in \mathbf{R}^m \mid i = 1, ..., n\}$ (e.g., atomic configuration, sensors etc)
- Čech complex

$$\mathcal{C}(X,r) = \{ |x_{i_0} \cdots x_{i_k}| \mid \bigcap_{j=0}^k B_r(x_{i_j}) \neq \emptyset \}$$

Čech complex model of hemoglobin

Nerve Theorem

$$\cup_{x \in X} B_r(x) \simeq \mathcal{C}(X, r)$$

- homotopy equivalence
- preserve hole information
- LHS: atomic configuration, sensor location, data points
- RHS: easy to treat in computer

Čech complex…… building in higher dimensions is not easy

- Input point cloud $X = \{x_i \in \mathbf{R}^m \mid i = 1, \dots, n\}$
- Rips complex

 $\mathcal{R}(X,r) = \{ |x_{i_0} \cdots x_{i_k}| \mid B_r(x_{i_s}) \cap B_r(x_{i_t}) \neq \emptyset, \ 0 \le s < t \le k \}$

note: checking pair-wise intersections

- NOT preserving hole information in general
- computable even in higher dimensions (only requiring distance matrix)

Filtration for multi-scale analysis

• Let K(X,r) = C(X,r) or $\mathcal{R}(X,r)$

$→ K(X,r) \subset K(X,s) \quad \text{for } r \leq s$ (∵ checking nonempty intersections)

- $\{K(X,r)\}_{r\geq 0}$: filtration (fattening sequence)
- the parameter r controls a resolution of data

(ref. Edelsbrunner, Mucke)

Sublevel set

- a map $f: M \to \mathbb{R}$ on a metric space (M, d_M)
- sublevel set $M_h = \{x \in M \colon f(x) \le h\}$
- filtration $M_{h_1} \subset M_{h_2} \subset \cdots \subset M_{h_n}$ by $h_1 \leq h_2 \leq \cdots \leq h_n$

• For a point cloud $X = \{x_i \in M : i = 1, \dots, K\}$, define

 $\operatorname{dist}_X : M \to \mathbb{R} \quad \text{by} \quad \operatorname{dist}_X(x) := \min_{x_i \in X} d_M(x, x_i)$ $\longrightarrow M_h = \bigcup_{x_i \in X} B_h(x_i) \text{ Point clouds can also be studied by sublevel sets}$

1. 背景

2. データの幾何モデル 3. パーシステントホモロジーの導入

4. 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Persistent homology and persistence diagram

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

Persistent homology of digital image

- sub-level set $X_h := \{x \in X \mid f(x) \le h\}$
- fattening $X_{h_1} \subset X_{h_2} \subset \cdots \subset X_{h_T}$ by $h_1 \leq h_2 \leq \cdots \leq h_T$

2. Spatial persistence

black-white image

Characterize grayscale/spatial persistent holes in images

Historical remarks

Computational homology project ('02-present)

- ホモロジー高速計算の開発と力学系を中心とした諸問題への応用(Mischaikow, Mrozek, Pilarczyk, 荒井, 平岡, 國府 etc)
- ・入力データの2値化(スケールの固定)が必要

Edelsbrunner, Letscher, and Zomorodian ('02)

- (限定的な)単体複体フィルトレーションに対してベッチ数の変化を調べる
- ・ 区間分解の構成的アルゴリズムを提示

Zomorodian and Carlsson ('05)

- ・より一般的な設定(persistence modules)での区間分解定理の証明、パーシステント図の導入
- ・次数付き加群として鎖複体(境界作用素)を導入する定式化
- ・ Zomorodianはその後企業へ(D. E. Shaw & Co ← 有名なヘッジファンドの一つ)

de Silva and Carlsson ('10)

・Anクイーバの表現としての定式化

代数的研究の重要課題 multi-parameter persistence

Carlsson and Zomorodian ('09): Gröbner basis Escolar and H ('16): Auslander-Reiten theory Justin Curry ('14), Kashiwara-Schapira ('17): (co-)Sheaf, micro-local analysis

その他の流れ	
・安定性定理	
・確率論	
・逆問題	
・統計・機械学	
・応用	

1. 背景

データの幾何モデル パーシステントホモロジーの導入 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Representation of quivers (associative algebras)

• Quiver $Q = (Q_0, Q_1)$ set of arrows $A_n: \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{n}{\longrightarrow}$ $L_n:$ set of vertices Path algebra *KQ*: *K*-vector space spanned by all paths, where the product of two paths is their composition • Associative algebra A = KQ/I, $I = \langle \rho_1, \dots, \rho_s \rangle$ a relation $\rho = \sum_{i=1}^{k} c_i \underline{w_i}, \quad c_i \in K$ commutative relation β • A representation $M = (M_a, \varphi_\alpha)_{a \in Q_0, \alpha \in Q_1}$ on Q (or A) - a vector space M_a on each vertex $a \in Q_0$ - a linear map $\varphi_{\alpha}: M_a \to M_b$ for each arrow $\alpha: a \to b$ $\varphi_{\alpha}\varphi_{\beta} - \varphi_{\gamma}\varphi_{\delta} = 0$ (- $\varphi_{\rho} = \sum c_i \varphi_{w_i} = 0$, i.e., composition on relations vanishes) • An indecomposable representation M: $M = N \oplus N' \longrightarrow N = 0$ or N' = 0

- Krull-Schmidt Theorem: $M \simeq N^{(1)} \oplus \cdots \oplus N^{(\ell)}$, $N^{(i)}$: indecomposable
- Gabriel Theorem: For an A_n-quiver with arbitrary orientations,

$$M \simeq \bigoplus_{1 \le b \le d \le n} I[b,d]^{m_{bd}}, \quad m_{bd} \in \mathbb{N}_0 \quad \text{(interval decomposition)}$$
$$I[b,d]: 0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow K \leftrightarrow \cdots \leftrightarrow K \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$$
$$\underset{\text{at } b}{\text{at } d} \quad \text{at } d$$

Persistent homology and persistence diagram

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

Merit for data analysis

- Time series data $X(t) = \{x_i(t) \in \mathbb{R}^m : i = 1, \dots, K\}, \quad t = 1, 2, \dots, T$ (e.g., protein folding, polymer deformation, moving sensors)
 - time series of Čech complexes C(t) := C(X(t), r), t = 1, ..., Tbut not filtration w.r.t. time t
 - zigzag sequence $\dots \leftrightarrow \mathcal{C}(t) \hookrightarrow \mathcal{C}(t+1) \leftrightarrow \mathcal{C}(t+1) \hookrightarrow \dots$

 $\longrightarrow \ \ \leftarrow H\mathcal{C}(t) \rightarrow H(\mathcal{C}(t) \cup \mathcal{C}(t+1)) \leftarrow H\mathcal{C}(t+1) \rightarrow \cdots$

 $\simeq \oplus_j I[b_j, d_j]$ (\because representation of A_n quiver)

We can study persistent topological features in time series sense

Drawback?

• The spatial resolution r is fixed in C(t) = C(X(t), r) , and

persistent topological features in spatial sense can't be studied!

What's next?

We want both!! persistent homology with multi-parameters

multi-parameter persistent homology

- well-defined as a representation, but its decomposition theory is not understood well.
- developing decomposition theory is very important for applications in TDA
- Carlsson and Zomorodian ('09) apply Gröbner basis to derive (incomplete) invariants
- persistent homology on commutative ladder

- Escolar and H ('16) apply Auslander-Reiten theory for decomposition theory of $n \leq 4$
- useful in materials science (detecting robust geometric features in glass under compression process)
- BOCS representation: 浅芝先生の講演へ (bimodule over a category with a coalgebra structure)

Auslander-Reiten theory and persistence diagrams Escolar and H. Discrete Comput. Geom. (2016)

• Auslander-Reiten quiver $\Gamma = (\Gamma_0, \Gamma_1)$ of a quiver Q (or A)

 Γ_0 : the set of iso. classes of indecomposable representations $\Gamma_1 \ni \varphi : [I] \to [J] \bigoplus_{def} \exists \text{ an irreducible map } I \to J$

• From Gabriel's theorem on A_n -quiver, $M \simeq \bigoplus_{1 \leq b \leq d \leq n} I[b,d]^{m_{bd}}, m_{bd} \in \mathbb{N}_0$

PD is defined as the function $D: \Gamma_0 \ni I[b,d] \to m_{b,d} \in \mathbb{N}_0$

Commutative ladder persistence Escolar and H. Discrete Comput. Geom. (2016)

Study common and robust top. properties under pressurization of materials

commutative ladder persistence with length 3

$$H_*(X_s) \to H_*(X_s \cup Y_s) \leftarrow H_*(Y_s)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$H_*(X_r) \to H_*(X_r \cup Y_r) \leftarrow H_*(Y_r)$$

Commutative ladder persistence Escolar and H. Discrete Comput. Geom. (2016)

Study common and robust top. properties under pressurization of materials

commutative ladder persistence with length 3

$$H_*(X_s) \to H_*(X_s \cup Y_s) \leftarrow H_*(Y_s)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$H_*(X_r) \to H_*(X_r \cup Y_r) \leftarrow H_*(Y_r)$$

Commutative ladder persistence Escolar and H. Discrete Comput. Geom. (2016)

Study common and robust top. properties under pressurization of materials

commutative ladder persistence with length 3

$$H_*(X_s) \to H_*(X_s \cup Y_s) \leftarrow H_*(Y_s)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$H_*(X_r) \to H_*(X_r \cup Y_r) \leftarrow H_*(Y_r)$$

• persistence diagram of the pressurization process

99.18% (≒ 2304/2323) generators persist under pressurization!

1. 背景

データの幾何モデル パーシステントホモロジーの導入 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Stability of persistence diagrams

Motivation

- In practical applications, input data is usually affected by noise
- Homology are NOT stable w.r.t. noise
- How about persistent homology?

Stability Theorem (Cohen-Steiner, et al, '07)

For (tame) continuous functions $f, g: M \to \mathbb{R}$, $d_{\mathrm{b}}(D_f, D_g) \leq \|f - g\|_{\infty}$

- D_f : PD of the sublevel set filtration for f
- $d_{\mathbf{b}}(\bullet, \bullet)$: the bottleneck distance

$$d_{\mathrm{b}}(D_{f}, D_{g}) := \inf_{\gamma} \sup_{p \in \bar{D}_{f}} \|p - \gamma(p)\|_{\infty}$$
where $\bar{D} := D \sqcup \underline{\Delta}$ and $\gamma : \bar{D}_{f} \to \bar{D}_{g}$ is a bijection (diagonal)

Algebraic stability theorem (Chazal et al '09, Bauer and Lesnick '14)

• persistence module $M \xleftarrow[\text{def}]{}$ functor $M : \mathbf{R} \to \mathbf{vect}$ category of fin. dim. vector spaces as a poset category **(PM)** $\varphi^{s,t}_M: M^s \to M^t \quad (s \le t), \quad \varphi^{s,s}_M = \mathrm{id}$ Fact: $M \simeq \bigoplus I[b,d]$ (interval decomposable) by D_M

• persistence modules $M, N : \mathbf{R} \to \mathbf{vect}$ are ϵ -interleaving

• interleaving distance $d_{I}(M, N) := \inf \{ \epsilon \in [0, \infty) : M, N \text{ are } \epsilon - \text{interleaving} \}$ (applicable even to multi-parameter PM)

Algebraic stability theorem $d_{\rm b}(D_M, D_N) \leq d_{\rm I}(M, N)$

remark: "=" holds (isometry theorem)

Stability of persistence diagrams

Bottleneck stability for Čech PDs

 $d_{\mathrm{b}}(D(\mathcal{C}(X)), D(\mathcal{C}(Y))) \le d_{\mathrm{H}}(X, Y)$

Hausdorff distance: $d_H(X, Y) = \max\{\max_{x \in X} d(x, Y), \max_{y \in Y} d(X, y)\}$

Remarks

• *r*-Wasserstein distance on PDs and its stability

$$d_{W_r}(D, D') = \inf_{\gamma} \left(\sum_{p \in \bar{D}} \|p - \gamma(p)\|_{\infty}^r \right)^{1/r}$$

geometry of a set of PDs as a metric space?

continuation of point clouds via PDs (Gameiro, Obayashi, H, '16)

- PDs as counting measures on the plane
 - ▶ 白井さんの講演へ(random point process)

1. 背景

2. データの幾何モデル 3. パーシステントホモロジーの導入

4. 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Computation

CHomP (Mischaikow, Mrozek, Pilarczyk, etc): 方体ホモロジーの計算

Perseus (Nanda):

離散モース理論を用いたPDの計算

PHAT, DIPHA (Bauer, Kerber, Reininghaus, Wagner): PDの高速計算

Ripser (Bauer): Rips PDの高速計算

<mark>(仮名)Cubical Ripser (阿原・須藤)</mark>: 方体PDの高速計算

HomCloud (大林): つぎのスライドで説明

ソフトウェア開発:HomCloud

1)東北大学AIMRで開発するTDAソフトウェア(開発リーダー:大林一平氏)
 2)高機能GUIの搭載による汎用性(トポロジーの予備知識は不要)
 3)高速PD計算PHAT、DIPHAを搭載
 4)空間点データおよび2D/3D画像データ解析
 5)PD逆問題、PD統計解析、PDスパース解析(LASSOなど)
 http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/index.html

1. 背景

データの幾何モデル パーシステントホモロジーの導入 代数的研究(クイバーの表現論)

5. 安定性定理

6. 計算ソフトウェア

7. 応用(材料科学)

Materials TDA

Supported by AIMR, CREST, SIP, MI^2I, NEDO

Hierarchical Structural Analysis of Silica Glass with Nakamura, Hirata, Escolar, Matsue, Nishiura PNAS (2016) CREST TDA, SIP

MD and PD₁

Inverse Analysis

- Glass contains curves in PD
- Curves express geometric constraints (orders) of atomic configurations
- Inverse analysis reveals hierarchical ring structures
- PD multi-scale analysis characterizes inter-tetrahedral O-O orders (curve Co)
- universal tool for structural analysis

What is glass?

supercooled liauid

crystal

temperature

glass

liquid

- * Not yet fully answered to "what is glass?"
- * Not liquid, not solid, but something in-between
- * Atomic configuration looks random, but
 - sufficient cohesion to maintain rigidity
- ***** Further geometric understandings of atomic
- configurations are
 Solar Energy Glass, DVD, BD, etc.

Atomic configurations of silica (SiO2)

Y.H., et al. PNAS (2016)

Support dim and order parameter

Y.H., et al. PNAS (2016)

Geometric origins of curves: inverse problem

Y.H., et al. PNAS (2016)

Curves and constrains

- * O-O-O ring constrains are discovered
- necessary to study both distance and angle distributions simultaneously (conventional methods cannot detect)

Densified silica glass in high pressure and temperature with Kohara (NIMS), Hirata, Obayashi (AIMR) MI^2I (Innovation Hub), CREST TDA

- PDs become sharper like PP, and show the increase of packings of oxygens at high temp.
- Oxygen PDs ascribe for the first time O-O ordering between different SiO4 tetrahedra to PP
- The geometric origin of PP ordering is coesitelike rings

Metallic Glass: geometric origin of distorted icosahedra

with Hirata, Obayashi, Takeuchi (AIMR) CREST TDA

Craze formation of polymers

with Ichinomiya, Obayashi PRE (2017) SIP, NEDO

detect large voids from PD movie as generators with large death values

• explore initial config. of large voids by reversing time with inverse PD method

large voids are generated by coalescence of micro voids (void percolation)

Materials Informatics: Machine Learning on PDs

with Kimura (KEK), Obayashi (AIMR) SIP, CREST TDA

X-CT of iron-ore sinters

original

iron oxide

calcium ferrite (CF)

Trigger site of micro cracks are supposed to be related to hetero-structure of iron oxide and CF. No descriptors have been developed so far.

background

- large amount of experimental images are available
- want to find a compact descriptor to connect images to materials properties (cracks, elasticity, conductivity etc)

develop a method of image analysis using big data

our approach

- PD for compact descriptor of images
- ML for combining with big data

LASSO (Sparse PD)

detected trigger site of cracks

Statistical inverse analysis on persistence diagram with Obayashi (AIMR) arXiv:1706.10082 CREST TDA, SIP, NEDO, MI^2

Background

- PDs are good descriptors in materials science
- Want to extract statistical features in the dataset of PDs
- Vectorization of PDs are necessary for applying machine learnings (persistence landscape, persistence image, PSSK, PWGK, etc)
- Want to study the original data space (inverse problems)

Study machine learning models based on persistence diagrams Vectorization: persistence image ML: Logistic regression, Linear regression (LASSO/RIDGE)

今後の展望

代数

- ・ multiparameter persistent homology の理論整備
- ・表現論 (浅芝, 吉脇, Escolar), sheaf (Curry), microlocal analysis (Kashiwara-Schapira)の展開

確率論

- ・パーシステント図に対する極限定理(白井, Duy, 角田)
- multiparameter persistent homologyへの確率論的視点

幾何

・ 測度距離空間としてのパーシステント図の集合の幾何構造(PD空間)

力学系

・ 有限サンプル点上で定まる力学系解析(竹内, Edelsbrunner, Jabłoński, Mrozek)

統計・機械学習

- ・ 時系列解析とmultiparameter persistent homology
- ・機械学習の性能解析(福水,草野,大林)

逆問題

- ・実現可能なパーシステント図(realizable PD)は?PD空間と逆問題
- ・最小生成元(optimal cycle)の高速計算(大林)

ソフトウェア開発

高速化、多機能化(大林、須藤、阿原)

応用

・より踏み込んだ応用(材料、生命、脳、気象、医療、経済 etc) _ 数学へのフィードバック

- ・ 平岡裕章. 位相的データ解析とパーシステントホモロジー. 日本数学会『数学』68, 361-380 (2016).
- ・ 平岡裕章,タンパク質構造とトポロジー:パーシステント
 ホモロジー群入門,共立出版 (2013).
- Carlsson. Topology and Data. Bulletin of AMS. 2009.
- Edelsbrunner and Harer. Computational Topology. AMS. 2009.
- Ghrist. Elementary Applied Topology. CreateSpace Independent Publishing Plat- form, 2014.
- AYASDI. http://www.ayasdi.com