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1. Introduction

This is a joint work with Satoshi Masaki (Osaka university). We consider
the space-time estimates for the solution e−t∂3

xf to the Airy equation

(1.1)

{
∂tu + ∂3

xu = 0 t, x ∈ R,

u(0, x) = f(x) x ∈ R,

where u : R×R → R is an unknown function and f : R → R is a given data.
As with the Schrödinger equation, the Strichartz estimate for (1.1) is well-
known (see [2] for instance). The refinement of the Strichartz estimate for
(1.1) is studied by several authors. One of the refinement of the Strichartz
estimate is the following Stein-Tomas type estimate.

Theorem 1.1 (Stein-Tomas type estimate [1]). Let 4/3 < p 6 ∞. Then,
there exists a positive constant C depending only on p such that the inequality

(1.2)
∥∥∥|∂x|

1
3p e−t∂3

xf
∥∥∥

L3p
t,x

6 C‖f‖L̂p

holds for any f ∈ L̂p, where the space L̂p is defined for 1 6 p 6 ∞ by

L̂p = L̂p(R) := {f ∈ S ′(R)| ‖f‖L̂p = ‖f̂‖Lp′ < ∞},

where f̂ stands for Fourier transform of f with respect to space variable and
p′ denotes the Hölder conjugate of p.

We consider an improvement of the Stein-Tomas type estimate (1.2). We
now introduce generalized Morrey space and generalized hat-Morrey space.

Definition 1.2. Let D := {τ j
k = [k2−j , (k + 1)2−j) | j, k ∈ Z}.

(i) For 1 6 q 6 p 6 ∞ and for 1 6 r 6 ∞, we define a generalized Morrey
norm ‖·‖Mp

q,r
by

‖f‖Mp
q,r

=
∥∥∥|τ j

k |
1
p
− 1

q ‖f‖
Lq(τ j

k)

∥∥∥
`r
j,k

,

where, the case p = q and r < ∞ is excluded.
(ii) For 1 6 p 6 q 6 ∞ and for 1 6 r 6 ∞, we also introduce ‖f‖M̂p

q,r
:=

‖f̂‖
Mp′

q′,r
, i.e.,

‖f‖M̂p
q,r

=
∥∥∥∥|τ j

k |
1
q
− 1

p

∥∥∥f̂
∥∥∥

Lq′ (τ j
k)

∥∥∥∥
`r
j,k

.

Banach spaces Mp
q,r and M̂p

q,r are defined as sets of tempered distributions
of which above norms are finite, respectively.
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The first main theorem is as follows.

Theorem 1.3 (Refinement of Stein-Tomas type estimate -diagonal case-[5]).
Let 4/3 6 p < ∞. Then, there exists a positive constant C depending only
on p such that the inequality

(1.3)
∥∥∥|∂x|

1
3p e−t∂3

xf
∥∥∥

L3p
t,x

6 C ‖f‖M̂p
3p
2 ,2(

3p
2 )′

holds for any f ∈ M̂p
3p
2

,2( 3p
2

)′
.

Using the refined Stein-Tomas estimate (1.3), we are able to prove the
existence of a minimal non-scattering solution to the generalized Korteweg-
de Vries equation

(gKdV)

{
∂tu + ∂3

xu = µ∂x(|u|2αu) t, x ∈ R,

u(0, x) = u0(x) x ∈ R,

where u : R × R → R is an unknown function, u0 : R → R is a given data,
and µ = ±1 and α > 0 are constants, see [5] for detail.

Furthermore, we obtain the refinement of Stein-Tomas type estimate for
the non-diagonal case.

Theorem 1.4 (Refinement of Stein-Tomas type estimate -non-diagonal
case-). Let ε ∈ (0, 1/4). Let (p, q) satisfy

0 6 1
p

6 1
4
− ε,

1
q

6 1
2
− 1

p
− ε.

Define β and s by
2
p

+
1
q

=
1
β
− ε, s = −1

p
+

2
q
− ε.

Further, we define γ and δ by
1
γ

=
1
β
− 1

max(p, q)
,

1
δ

=
1
2
− 1

max(p, q)
,

then, there exists a positive constant C depending on p, q such that for any
f ∈ M̂β

γ,δ, ∥∥∥|∂x|se−t∂3
xf

∥∥∥
Lp

x(R;Lq
t (R))

6 C‖f‖
M̂β

γ,δ
.
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