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We study the time local well-posedness in low regularity of the Cauchy
problem for the nonlinear evolution equation with third order and second
order dispersions:

∂tu+ α∂3
xu+ iβ∂2

xu+ iγ1|u|2u+ γ2|u|2∂xu = 0, (1)

t ∈ [−T, T ], x ∈ T,

u(0, x) = u0(x), x ∈ T, (2)

where α, β, γ1 and γ2 are real constants and T is a positive constant.
Throughout this note, we assume that

αβ ̸= 0 =⇒ 2β/3α ̸∈ Z. (3)

We consider the following three cases:

(cNLS) α = 0, β ̸= 0, γ1 ̸= 0, γ2 = 0,

(mKdV) α ̸= 0, β = 0, γ1 = 0, γ2 ̸= 0,

(3rdLL) α ̸= 0, β ̸= 0, γ1 ̸= 0, γ2 = 0.

In the cases (cNLS), (mKdV) and (3rdLL), equation (1) is called the cubic
nonlinear Schrödinger equation, the (complex) modified KdV equation and
the third order Lugiato-Lefever equation, respectively. In the physical con-
text, equation (1) often includes the damping term, the detuning term iθu
(θ ∈ R), the external forcing term and others (see [2], [14] and [20]), but we
omit those terms because it does not matter as far as the time local well-
posedness is concerned. From a scaling point of view, the critical Sobolev
spaces are Ḣ−1/2, Ḣ−1/2 and Ḣ−1, respectively, in the cases (cNLS), (mKdV)
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and (3rdLL). These three equations have two features in common, that is,
the cubic nonlinearity and the conservation of L2 norm. These yield com-
mon resonant frequencies though they are different in linear dispersion and
nonlinearity (as a result, different in the critical Sobolev spaces) from each
other. To be more specific, the so-called reduced equations corresponding
to these three cases (cNLS), (mKdV) and (3rdLL) are similar in resonance
structure to each other. If we put

v(t, x) = u
(
t, x+

γ2
π

∫ t

0

∥u(s)∥2L2 ds
)
e

γ1
π
i
∫ t
0 ∥u(s)∥2

L2 ds+
γ2
2π

i
∫ t
0 Im (∂xu(s),u(s))L2 ds,

then the reduced equation can be formally written as follows.

∂tv + α∂3
xv + iβ∂2

xv + iγ1
(
|v|2 − 1

π
∥v(t)∥2L2

)
v (4)

+γ2
[(
|v|2 − 1

2π
∥v(t)∥2L2

)
∂xv − i

2π
Im (∂xv, v)L2v

]
= 0,

t ∈ [−T, T ], x ∈ T,

where (·, ·)L2 denotes the scalar product in L2(T).

Remark 0.1. We note that the quantities ∥u(s)∥2L2 and Im (∂xu, u)L2 cor-
respond to the mass and the current (or the momentum), respectively, for
equation (1), which are independent of time t.

In this talk, I first give a brief survey of known results on (cNLS) and
(mKdV) and next present several new results on (3rdLL), which are partly
based on the joint work with Miyaji Tomoyuki, Meiji Institute for Advanced
Study of Mathematical Sciences, Meiji University.
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