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Abstract

　Multiresponse experiments in two-way layouts with interaction, having equal number of observations

per cell, are considered. Statistical procedures of the test and estimation, based on studentized robust

statistics, for location parameters in the models are proposed. Large sample properties of their procedures

as the cell size tends to infinity are investigated. Although Fisher’s consistency is assumed in the theory

of M-estimators, it is not needed in this paper. For the univariate case, it is found that the asymptotic

relative efficiencies (ARE’s) of the proposed procedures relative to classical procedures agree with the

classical ARE-results of Huber’s one sample M -estimator relative to the sample mean. By simulation

studies, it can be seen that the proposed estimators are more efficient than least squares estimators except

for the case where the underlying distribution is normal.
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　We consider two-way MANOVA model with interaction, having equal number of observations per cell.

For the two-way model, the k-th observation Xijk = (X
(1)
ijk, · · · , X(p)

ijk)
′ in the i-th level of the first factor

and j-th level of the second factor is expressed as

Xijk = µ+αi + βj + (αβ)ij + eijk, (i = 1, · · · , I, j = 1, · · · , J, k = 1, · · · , n)(1.1)

where
∑I

i=1 αi =
∑J

j=1 βj = 0 and
∑I

i=1(αβ)ij =
∑J

j=1(αβ)ij = 0 for all i, j’s. In (1.1), µ is the

overall mean response, αi is the effect of the i-th level of the first factor, βj is the effect of the j-th level

of the second factor, (αβ)ij is the interaction between the i-th level of the first factor and the j-th level of

the second factor and eijk is the error term with E(eijk) = 0. The terms αi and βj are also called main

effects. It is assumed that eijk’s are independent and identically distributed with continuous distribution

function F (x(1)/σ(1), · · · , x(p)/σ(p)), where V (e(�)ijk) = {σ(�)}2 and e(�)ijk is the �-th element of eijk. For the

respective parameters, the null hypotheses of interest and the alternatives are respectively

H ; (αβ)ij = 0 for i = 1, · · · , I and j = 1, · · · , J v.s. A; (αβ)ij �= 0 for some (i, j).

H ′; αi = 0 for i = 1, · · · , I v.s. A′; αi �= 0 for some i.

H∗; βj = 0 for j = 1, · · · , J v.s. A∗; βj �= 0 for some j.

We propose test procedures based on studentized robust statistics for these hypotheses in the model

(1.1). We derive their asymptotic properties as cell size n tends to infinity. We also propose robust

estimators studentized by scale-estimators for the interactions, main effects and overall mean response,

and derive their asymptotic normality.

MultivariateM -tests andM -estimators based on studentized robust statistics were discussed by Singer

and Sen (1985) for full rank linear models . Further discussions of studentized M-procedures were done by

Koenker and Portnoy (1990) and Jurečková and Sen (1995). The linear models do not include our model

(1.1), which is not of full rank. In all of those theoretical discussions, Fisher’s consistency:
∫
ψ(x)dF (x) =

0 was needed. Shiraishi (1990) discussed multivariate M -tests without assuming Fisher’s consistency.

However Shiraishi’s test statistics are not studentized. In practically applied model assumptions, the

scale-parameter of the underlying distribution is unknown and Fisher’s consistency does not hold. We

need to construct flexible statistical procedures. For the model (1.1), we propose studentized robust tests

and computable robust estimators. The asymptotic noncentral χ2-distributions for the test statistics

and asymptotic normality for robust estimators are derived, assuming only the finiteness of Fisher’s

informations. Fisher’s consistency :
∫
ψ�(x(�))dF�(x(�)) = 0 is not assumed. Shiraishi (1991) discussed

rank procedures in the model (1.1) and showed that, for the univariate cases, the Pitman asymptotic

relative efficiency (ARE) of the rank procedures relative to the normal theory methods agrees with the
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of the proposed tests (proposed estimators) relative to the F -tests (least squares estimators (LSE’s))

agrees with the ARE of the Huber’s (1964) M -estimators relative to the one-sample sample mean. By

simulation study, even for the small cell sizes, it can be seen that the proposed estimators are more

efficient than least squares estimators except for the case where the underlying distribution is normal.

In Section 2, studentized robust procedures are proposed. In Section 3, asymptotic linearity is studied

for robust statistics. In Section 4, the asymptotic χ2-distributions of the test statistics for respective

parameters are derived. In Sections 5, asymptotic multivariate normality for the robust estimators are

studied. In Section 6, the asymptotic efficiencies of the proposed procedures relative to parametric

procedures and robustness due to Huber (1964) are studied. In Section 7, simulation study for small cell

sizes is done.

2 Robust Procedures

　Because of the construction of robust statistics and because of comparison with robust procedures, we

put LSE’s of µ, αi, βj and (αβ)ij by µ̃ = X̄..., α̃i = X̄i..−X̄..., β̃j = X̄.j .−X̄..., and ˜(αβ)ij = X̄ij .−
X̄i..−X̄.j .+X̄..., respectively, where X̄... =

∑I
i=1

∑J
j=1

∑n
k=1 Xijk/N , X̄i.. =

∑J
j=1

∑n
k=1 Xijk/(Jn),

X̄ .j. =
∑I

i=1

∑n
k=1 Xijk/(In), X̄ij . =

∑n
k=1 Xijk/n, and N = IJn. The �-th elements of µ̃, α̃i, β̃j and

˜(αβ)ij are respectively defined by µ̃
(�), α̃(�)

i β̃
(�)
j and ˜(αβ)

(�)

ij . For p× (IJ) matrices
T = (t11, · · · , t1J , t21, · · · , tIJ) = (t(�)ij ), Θ = (θ11, · · · ,θ1J ,θ21, · · · ,θIJ) = (θ(�)

ij ) and for p × J matrix

Θ∗ = (θ∗
1, · · · ,θ∗

J) = (θ∗(�)j ) and p dimensional column vectors t = (t(1), · · · , t(p))′, θ = (θ(1), · · · , θ(p))′

and s = (s(1), · · · , s(p))′, let us define aligned observations by X
(�)
ijk(T ,Θ, s) = {X(�)

ijk − t
(�)
ij − θ

(�)
ij }/s(�),

X
∗(�)
ijk (T ,Θ∗, s) = {X(�)

ijk − t
(�)
ij − θ

∗(�)
j }/s(�), X
(�)

ijk (t,θ, s) = {X(�)
ijk − t(�) − θ(�)}/s(�) and X�(�)

ijk (T ,θ, s) =

{X(�)
ijk − t

(�)
ij − θ(�)}/s(�). Then for function ψ�(x) defined on R1 and for p × (IJ) matrices T , Θ, p × J

matrices Θ∗ and p dimensional column vectors θ, t and s, let us put

M
(�)
ij (T ,Θ, s)

=
n∑

k=1

{ψ�(X
(�)
ijk(T ,Θ, s))− ψ̄�(X

(�)
.jk(T ,Θ, s))− ψ̄�(X

(�)
i.k (T ,Θ, s)) + ψ̄�(X(�)

... (T ,Θ, s))}/√n,(2.1)

M
∗(�)
j (T ,Θ∗, s) =

I∑
i=1

n∑
k=1

{ψ�(X
∗(�)
ijk (T ,Θ∗, s))− ψ̄�(X∗(�)

... (T ,Θ∗, s))}/√n,(2.2)

M

(�)
ijj′ (t,θ, s) =

n∑
k=1

{ψ�(X

(�)
ijk (t,θ, s))− ψ�(X


(�)
ij′k(t,−θ, s))}/√n,(2.3)
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M �(�)(T ,θ, s) =
I∑

I=1

J∑
j=1

n∑
k=1

ψ�(X
�(�)
ijk (T ,θ, s))/

√
n,(2.4)

respectively, where ψ̄�(X
(�)
.jk(T ,Θ, s)) =

∑I
i=1 ψ�(X

(�)
ijk(T ,Θ, s))/I,

ψ̄�(X
(�)
i.k (T ,Θ, s)) =

∑J
j=1 ψ�(X

(�)
ijk(T ,Θ, s))/J , ψ̄�(X(�)

... (T ,Θ, s)) =
∑I

i=1

∑J
j=1

∑n
k=1 ψ�(X

(�)
ijk(T ,Θ, s))/N

and ψ̄�(X∗(�)
... (T ,Θ∗, s)) is also the sample mean about the dots · · ·.

2.1 Tests

　Let us put p× (IJ) matrix

M(T ,Θ, s) = (M11(T ,Θ, s), · · · ,M1J(T ,Θ, s),M21(T ,Θ, s), · · · ,M IJ (T ,Θ, s)),(2.5)

where M ij(T ,Θ, s) = (M (1)
ij (T ,Θ, s)), · · · ,M (p)

ij (T ,Θ, s))′. Then we propose to reject H when the

following statistic is too large.

MT = vec(M(T̃ n, Op×IJ , s̃n))′(EIJ ⊗ Γ̂−1)vec(M(T̃ n, Op×IJ , s̃n)),

where vec(Z) = (z′
1, · · · , z′

K)
′ for p×K matrix Z = (z1, · · · , zK), Em denotes the m-dimensional identity

matrix, Γ̂ = (γ̂��′)�,�′=1,···,p, and

γ̂��′ =
I∑

i=1

J∑
j=1

n∑
k=1

{ψ�(X
(�)
ijk(T̃ n, Op×IJ , s̃n))− ψ̄�(X(�)

... (T̃ n, Op×IJ , s̃n))}

{ψ�′(X
(�′)
ijk (T̃ n, Op×IJ , s̃n))− ψ̄�′(X(�′)

... (T̃ n, Op×IJ , s̃n))}/{IJ(n− 1)},(2.6)

T̃ n = (µ̃+ α̃1 + β̃1, · · · , µ̃+ α̃1 + β̃J , µ̃+ α̃2 + β̃1, · · · , µ̃+ α̃I + β̃J), s̃n = (s̃(1), · · · , s̃(p))′ and

s̃(�) =
√
π

2
·

I∑
i=1

J∑
j=1

n∑
k=1

|X(�)
ijk − µ̃(�) − α̃

(�)
i − β̃

(�)
j − ˜(αβ)

(�)

ij |/N : mean absolute deviation.

Next let us put p× J matrix

M∗(T ,Θ∗, s) = (M∗
1(T ,Θ∗, s), · · · ,M∗

J(T ,Θ∗, s)),(2.7)

where M∗
j (T ,Θ∗, s) = (M∗(1)

j (T ,Θ∗, s)), · · · ,M∗(p)
j (T ,Θ∗, s))′. Then we propose to reject H∗ when the

following statistic is too large.

MT ∗ = vec(M ∗(T̃
∗
n, Op×J , s̃n))′(EJ ⊗ Γ̂∗−1)vec(M∗(T̃

∗
n, Op×J , s̃n))/I,

where Γ̂∗ = (γ̂∗��′)�,�′=1,···,p, and

γ̂∗��′ =
I∑

i=1

J∑
j=1

n∑
k=1

{ψ�(X
∗(�)
ijk (T̃

∗
n, Op×J , s̃n))− ψ̄�(X∗(�)

... (T̃
∗
n, Op×J , s̃n))}

·{ψ�′(X
∗(�′)
ijk (T̃

∗
n, Op×J , s̃n))− ψ̄�′(X∗(�′)

... (T̃
∗
n, Op×J , s̃n))}/{IJ(n− 1)},(2.8)

T̃
∗
n = (µ̃+ α̃1 + (α̃β)11, · · · , µ̃+ α̃1 + (α̃β)1J , µ̃+ α̃2 + (α̃β)21, · · · , µ̃+ α̃I + (α̃β)IJ).
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　M 
(�)
ijj′ (t̃ijj′ ,θ, s̃n) is nonincreasing in θ(�). Hence for j �= j′, we put

µ̂
(�)
ijj′ = [sup{θ(�) :M 
(�)

ijj′ (t̃ijj′ ,θ, s̃n) ≥ 0}+ inf{θ(�) :M 
(�)
ijj′ (t̃ijj′ ,θ, s̃n) ≤ 0}]/2,(2.9)

where t̃ijj′ = (X̄ ij.+ X̄ij′.)/2, s̃n = (s̃
(1)
n , · · · , s̃(p)

n )′. Then, by setting µij = µ+αi +βj +(αβ)ij , as an

robust estimator of
µij−µij′

2 , we propose µ̂ijj′ = (µ̂
(1)
ijj′ , · · · , µ̂(p)

ijj′ ). Hence since we get

J∑
j′=1

(µij − µij′ )/J = µij − µ̄i.

and
I∑

i=1

J∑
j′=1

(µij − µij′)/(IJ) = µ̄.j − µ̄..,

we may propose ˆ(αβ)ij = 2
∑J

j′=1 µ̂ijj′/J − 2∑I
i=1

∑J
j′=1 µ̂ijj′/(IJ) and β̂j = 2

∑I
i=1

∑J
j′=1 µ̂ijj′/(IJ)

as robust estimators of (αβ)ij and βj , respectively, where we put µ̂ijj = 0.

Lastly since M �(�)(T ,θ, s) is nonincreasing in θ(�), we put

　　̂µ(�) = [sup{θ(�) :M �(�)(T̃
�
,θ, s̃n) ≥ 0}+ inf{θ(�) :M �(�)(T̃

�
,θ, s̃n) ≤ 0}]/2,(2.10)

where T̃
�
= (α̃1+ β̃1+(α̃β)11, · · · , α̃1+ β̃J + (α̃β)1J , α̃2+ β̃1+(α̃β)21, · · · , α̃I + β̃J + (α̃β)IJ). As an

M-estimator of µ, we propose µ̂n = (µ̂(1), · · · , µ̂(p))′.

3 Robust Statistics and Asymptotic Linearity

　We impose the following conditions.

(c.1); ψ�(x) = ψ�1(x) + ψ�2(x) + ψ�3(x) + ψ�4(x), ψ�1(x) and ψ�2(x) are nondecreasing, ψ�3(x) and

ψ�4(x) are nonincreasing, ψ�1(x) and ψ�3(x) are continuous, and ψ�2(x) and ψ�4(x) are step functions

having only finitely many jumps. There exist constants b�i ≤ c�i such that ψ�i(x) = ψ�i(b�i) for x ≤ b�i;

= ψ�i(c�i) for x ≥ c�i (i = 1, 2, 3, 4). ✷

(c.2); Assume that the �-th marginal density of F (x) is defined by f�(x(�)). Then f�(x(�))′s have finite

Fisher’s informations, i.e., for � = 1, · · · , p,

0 <
∫ ∞

−∞
{−f ′

�(x
(�))/f�(x(�))}2f�(x(�))dx(�) < ∞

and

0 <
∫ ∞

−∞
{−1− x(�)f ′

�(x
(�))/f�(x(�))}2f�(x(�))dx(�) < ∞. ✷

(c.3); F (x) has finite Fisher’s informations, i.e., for � = 1, · · · , p,

0 <
∫

Rp

{−∂f(x)/∂x(�)/f (x)}2dF (x) < ∞
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0 <
∫

Rp

{−1− x(�)∂f(x)/∂x(�)/f (x)}2dF (x) < ∞. ✷

If (c.2) is satisfied, the densities
{∏I

i=1

∏J
j=1

∏n
k=1[1/(σ

(�)eω(�)/
√

N )f�((x
(�)
ijk−∆(�)

ij /
√
N)/(σ(�)eω(�)/

√
N ))]

}
are contiguous to the densities

{∏I
i=1

∏J
j=1

∏n
k=1[(1/σ

(�))f�(x
(�)
ijk/σ

(�))]
}
as n tends to infinity. Further

(c.3) implies that the densities
{∏I

i=1

∏J
j=1

∏n
k=1[{1/

∏p
�=1(σ

(�)eω(�)/
√

N )}f((x(1)
ij −∆(1)

ij /
√
N)/(σ(1)eω(1)/

√
N ), · · · ,

(x(p)
ij −∆(p)

ij /
√
N)/(σ(p)eω(p)/

√
N ))]

}
are contiguous to the densities{∏I

i=1

∏J
j=1

∏n
k=1[(1/

∏p
�=1 σ

(�))f(x(1)
ij /σ(1), · · · , x(p)

ij /σ(p))]
}
.

We can derive asymptotic linearity for the statistics M (�)
ij (T ,Θ, s), M∗(�)

j (T ,Θ∗, s), M 
(�)
ijj′ (t,θ, s) and

M �(�)(T ,θ, s). For p× (IJ) matrices T , Θ and p dimensional column vector s, we introduce the statistic

T
(�)
ij (T ,Θ, s) =

n∑
k=1

{ψ�(X
(�)
ijk(T ,Θ, s))− ψ̄�}/

√
n,

where

ψ̄� =
∫∞
−∞ ψ�( x

ρ(�) )dF�( x
σ(�) ).(3.1)

Proceeding as in the proof of Lemma3.1 of Shiraishi (1996), we get Lemma 3.1.

　

Lemma 3.1. Let (X111, · · · ,XIJn) have joint distribution function
∏I

i=1

∏J
j=1

∏n
k=1 F (x

(1)
ijk/σ

(1), · · · , x(p)
ijk/σ

(p)).

Then under the conditions (c.1)-(c.3), for any positive ε, C1, C2 and C3,

lim
n→∞P{ sup

‖η(�)‖IJ <C1,‖∆(�)‖IJ<C2,|ω(�)|<C3

|T (�)
ij (η/

√
n,∆/

√
n, g(ρ,ω/

√
n))− T

(�)
ij (Op×IJ , Op×IJ ,ρ) 　　　

+d�(η
(�)
ij +∆

(�)
ij )/σ

(�) + ω(�)e�| > ε} = 0,

where η = (η11, · · · ,η1J ,η21, · · · ,ηIJ), ηij = (η(1)
ij , · · · , η(p)

ij )
′, η(�) = (η(�)

11 , · · · , η(�)
1J , η

(�)
21 , · · · , η(�)

IJ ), ∆ is

also the definition similar to η, ρ = (ρ(1), · · · , ρ(p))′, g(ρ,ω/
√
n) = (ρ(1)eω(1)/

√
n, · · · , ρ(p)eω(p)/

√
n)′, ω =

(ω(1), · · · , ω(p))′, ‖z‖m =
√

z · z′ for the m-dimensional row vector z, d� = − ∫∞
−∞ ψ�(σ(�)x/ρ(�))f ′

�(x)dx,

and e� = − ∫∞
−∞ ψ�(σ(�)x/ρ(�)){1 + xf ′

�(x)
f�(x) }f�(x)dx. ✷

By using T (�)
ij (T ,Θ, s), we can rewrite

M
(�)
ij (T ,Θ, s) = T

(�)
ij (T ,Θ, s)− T̄

(�)
i· (T ,Θ, s)− T̄

(�)
·j (T ,Θ, s) + T̄

(�)
·· (T ,Θ, s),(3.2)

where T̄ (�)
i· (T ,Θ, s), T̄ (�)

·j (T ,Θ, s) and T̄ (�)
·· (T ,Θ, s) are respectively sample means about the dot ·.

　

Theorem 3.2. Let B1(C) = {∆;∑I
i=1 ∆ij =

∑J
j=1 ∆ij = 0 for all i, j′s, ‖∆(�)‖IJ < C} and B2(C) =
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{ ; j j , j , ‖ ‖ },
∆. Then under the assumptions of Lemma 3.1, for any positive ε and C,

lim
n→∞P{ sup

∆∈B1(C)

|M (�)
ij (T̃ n,∆/

√
n, s̃n)−M

(�)
ij (Op×IJ , Op×IJ ,ρ) + d� ·∆(�)

ij /σ
(�)| > ε} = 0,

where ρ =
√

π
2 · (∫∞

−∞ |x|dF1( x
σ(1) ), · · · ,

∫∞
−∞ |x|dFp( x

σ(p) ))′.

　

Proof. From the asymptotic boundedness of n ·∑I
i=1

∑J
j=1(µ̃

(�) + α̃
(�)
i + β̃

(�)
j )2, for any ε0 > 0, we

can take K1 and K2 sufficiently large such that P{n∑I
i=1

∑J
j=1(µ̃

(�) + α̃
(�)
i + β̃

(�)
j )2 ≥ K2

1} < ε0
2 and

P{√n| log(s̃(�)n )− log(ρ(�))| ≥ K2} < ε0
2 . Hence we get

P{sup∆∈B1(C) |M (�)
ij (T̃ n,∆/

√
n, s̃n)−M

(�)
ij (Op×IJ , Op×IJ ,ρ) + d� ·∆(�)

ij | > ε}
≤ P{sup∆∈B1(C) |M (�)

ij (T̃ n,∆/
√
n, s̃n)−M

(�)
ij (Op×IJ , Op×IJ ,ρ) + d� ·∆(�)

ij /σ
(�)| > ε,

n
∑I

i=1

∑J
j=1(X̄

(�)
i.. + X̄

(�)
.j. − X̄(�)

... )2 < K2
1 ,

√
n| log(s̃(�)n )− log(ρ(�))| < K2}

+P{n∑I
i=1

∑J
j=1(X̄

(�)
i.. + X̄

(�)
.j. − X̄(�)

... )2 ≥ K2}+ P{√n| log(s̃(�)n )− log(ρ(�))| ≥ K2}
≤ P{supη∈B2(K1),∆∈B1(C),|ω(�)|<K2

|M (�)
ij (η/

√
n,∆/

√
n, g(ρ,ω/

√
n)) − M

(�)
ij (Op×IJ , Op×IJ ,ρ) + d� ·

∆(�)
ij /σ

(�)| > ε}+ ε0.

Therefore Lemma 3.1 shows the conclusion. ✷

We get Corollary 3.3 as a direct result of Theorem 3.2.

　

Corollary 3.3. Under the assumptions of Lemma 3.1, for any positive ε and C1,

lim
n→∞P{ sup

∆∈B(C)

||M (�)
ij (T̃ n,∆/

√
n, s̃n)| − |M (�)

ij (Op×IJ , Op×IJ ,ρ)− d� ·∆(�)
ij /σ

(�)|| > ε} = 0. ✷

Next by using Lemma corresponding to Lemma 3.1, proceeding as in the proof of Theorem 3.2, we get

Theorems 3.4-3.6.

　

Theorem 3.4. Let B∗(C) = {∆∗ = (∆∗
1, · · · ,∆∗

J );
∑J

j=1 ∆∗
j = 0, ‖∆∗(�)‖J < C}. Then under the

assumptions of Lemma 3.1, for any positive ε and C,

lim
n→∞P{ sup

∆∗∈B∗(C)

|M∗(�)
j (T̃

∗
n,∆

∗/
√
n, s̃n)−M

∗(�)
j (Op×IJ , Op×J ,ρ) + Id� ·∆∗(�)

j /σ(�)| > ε} = 0,

where T̃
∗
n is defined in (2.8). ✷

　

Theorem 3.5. Under the assumptions of Lemma 3.1, for any positive ε and C,

lim
n→∞P{ sup

‖δ‖p<C

|M 
(�)
ijj′ (t̃ijj′ , δ/

√
n, s̃n)−M


(�)
ijj′ (Op×1, Op×1,ρ) + 2d� · δ(�)/σ(�)| > ε} = 0,
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Theorem 3.6. Assume that f�(−x) = f�(x) and ψ�(−x) = −ψ�(x) for all �’s. Then under the assump-

tions of Lemma 3.1, for any positive ε and C,

lim
n→∞P{ sup

‖δ‖p<C

|M �(�)(T̃
�

n, δ/
√
n, s̃n)−M �(�)(Op×IJ , Op×1,ρ) + IJd� · δ(�)/σ(�)| > ε} = 0,

where T̃
�

n is defined in (2.10). ✷

4 Asymptotic Properties of Test Statistics

4.1 Interactions

　Since the distributions of statistics under the model (1.1) do not depend on µ, αi’s, and βj ’s, through-

out this Section, it is assumed without any loss of generality that

µ = α1 = · · · = αI = β1 = · · · = βJ = 0.(4.1)

Based on the asymptotic distribution of M (T̃ n, Op×IJ , s̃n) under the null hypothesis H , we consider

to test H versus the alternative A.

　

Lemma 4.1. Suppose that conditions (c.1)-(c.3) are satisfied. Then under H , as n → ∞,
vec(M (T̃ n, Op×IJ , s̃n)) has asymptotically a pIJ-variate normal distribution with mean 0 and variance-

covariance matrix Λ ⊗ Γ, where Λ = (λmm′)m,m′=1,···,IJ , λmm′ = (1 − 1/I)(1 − 1/J) if m = m′; =

−1/J + 1/(IJ) if m = (i − 1)J + j and m′ = (i − 1)J + j′ for i and (j, j′) such that 1 ≤ i ≤ I and

1 ≤ j �= j′ ≤ J ; = −1/I + 1/(IJ) if m = (i − 1)J + j and m′ = (i′ − 1)J + j for (i, i′) and j such that

1 ≤ i �= i′ ≤ I and 1 ≤ j ≤ J ; = 1/(IJ) elsewhere,

Γ = (γ��′)�,�′=1,···,p,(4.2)

γ��′ =
∫∞
−∞{ψ�( x

ρ(�) )−ψ̄�}2dF�( x
σ(�) ) if � = �′; =

∫∞
−∞

∫∞
−∞{ψ�( x

ρ(�) )−ψ̄�}{ψ′
�(

y

ρ(�′) )−ψ̄′
�}dF��′( x

σ(�) ,
y

σ(�′) )

elsewhere, ψ̄� is defined by (3.1), F��′(x, y) stands for the (�, �′)−th marginal distribution of F (x) and ⊗
denotes Kronecker’s product.

　

Proof. Theorem 3.2 shows thatM(T̃ n, Op×IJ , s̃n)−M(Op×IJ , Op×IJ ,ρ)
P−→ 0 underH . Using Cramer-

Wold technique, it follows that vec(M(Op×IJ , Op×IJ ,ρ)
L−→ NpIJ(0,Λ⊗Γ), where L−→Nm(µ,Σ) denotes

convergence in law to an m variate normal distribution with mean µ and variance-covariance matrix Σ.

Hence the conclusion is found. ✷

8



g q

An; (αβ)ij =∆ij/
√
n, ∆ij �=∆i′j′ for some (i, j) �= (i′, j′),(4.3)

where
∑I

i=1 ∆ij =
∑J

j=1 ∆ij = 0 for all i, j’s and ∆ij = (∆
(1)
ij , · · · ,∆(p)

ij )
′. When ∆ij = 0 for all i, j’s,

An is equivalent to the null hypothesis H .

　

Theorem 4.2. Suppose that conditions (c.1)-(c.3) are satisfied and Γ is positive definite. Then under

An, as n → ∞, MT has asymptotically a noncentral χ2−distribution with p(I − 1)(J − 1) degrees of
freedom and noncentrality parameter δ2, where

δ2 =
∑I

i=1

∑J
j=1 µ′

ijΓ
−1µij , µij = (µ

(1)
ij , · · · , µ(p)

ij )
′ and µ

(�)
ij = d�∆

(�)
ij /σ

(�).

　

Proof. From Theorem 3.2, we get under H

|M (�)
ij (T̃ n,−∆/

√
n, s̃n)−M

(�)
ij (Op×IJ , Op×IJ ,ρ)− µ

(�)
ij | P−→ 0.(4.4)

Here it follows that vec{M(T̃ n,−∆/
√
n, s̃n)} L−→ N(vec(µ),Λ ⊗ Γ) under H , which implies the

relation that

vec(M (T̃ n, Op×IJ , s̃n))
L−→ NpIJ(vec(µ),Λ ⊗ Γ) underAn,(4.5)

where µ = (µ11, · · · ,µIJ ). Condition (c.1) shows Γ̂
P−→ Γ under An. Combining this with (4.5), from

Theorem stated in Section 3.5 of Serfling (1980), we find that MT = vec(M (T̃ n, Op×IJ , s̃n))′(Λ− ⊗
Γ̂−1)vec(M(T̃ n, Op×IJ , s̃n)) has asymptotically a noncentral χ2−distribution. Furthermore the degree
of freedom is equal to the rank of Λ⊗Γ which is p(I− 1)(J − 1) and the noncentrality parameter is given
by vec(µ)′(Λ⊗ Γ)−vec(µ) = vec(µ)′(EIJ ⊗ Γ−1)vec(µ) = δ2. Therefore the conclusion is found. ✷

4.2 Main Effects

　Based on the asymptotic distribution of M∗(T̃
∗
n, Op×J , s̃n) under H∗, we consider to test the null

hypothesis H∗ versus the alternative A∗. By using Theorem 3.4, proceeding as in the proof of Lemma

4.1, we get

　

Lemma 4.3. Suppose that conditions (c.1)-(c.3) are satisfied. Then under H∗, as n → ∞,
vec(M ∗(T̃

∗
n, Op×J , s̃n)) has asymptotically a pJ-variate normal distribution with mean 0 and variance-

covariance matrix I · Λ∗
J ⊗ Γ, where

Λ∗
J = EJ − 1J · 1′

J/J,(4.6)
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We consider the sequence of local alternatives

A∗
n; βj =∆∗

j/
√
n, ∆∗

j �=∆∗
j′ for some j �= j′,(4.7)

where
∑J

j=1 ∆∗
j = 0.

Using Lemma 4.3 and Theorem 3.4, we get Theorem 4.4 similar to Theorem 4.2.

　

Theorem 4.4. Suppose that the conditions of Lemma 4.3 are satisfied. Then under A∗
n, as n → ∞,

MT ∗ has asymptotically a noncentral χ2−distribution with p(J−1) degrees of freedom and noncentrality
parameter δ∗2, where δ∗2 = I

∑J
j=1(ν

∗
j )

′Γ−1ν∗
j , ν∗

j = (ν
∗(1)
j , · · · , ν∗(p)

j )′ and ν∗(�)j = d�∆
∗(�)
j /σ(�). ✷

5 Properties for Point Estimates

　We proposed ˆ(αβ) = ( ˆ(αβ)11, · · · , ˆ(αβ)1J ,
ˆ(αβ)21, · · · , ˆ(αβ)IJ) and β̂ = (β̂1, · · · , β̂J) as estimators

of matrix (αβ) and β, respectively. We add the condition (c.1’) and (c.4).

(c.1’); ψ�(x) = ψ�1(x)+ψ�2(x), ψ�1(x) and ψ�2(x) are nondecreasing, ψ�1(x) is continuous, and ψ�2(x) is

step functions having only finitely many jumps. There exist constants b�i ≤ c�i such that ψ�i(x) = ψ�i(b�i)

for x ≤ b�i; = ψ�i(c�i) for x ≥ c�i (i = 1, 2, 3, 4). ✷

(c.4); d� > 0 for � = 1, · · · , p. ✷

Then we get

　

Theorem 5.1. Suppose that the conditions (c.1’) and (c.2)-(c.4) are satisfied. Then
√
n · vec( ˆ(αβ) −

(αβ)) has asymptotically a pIJ-variate normal distribution with mean 0 and variance-covariance matrix

Λ⊗ (DΓD), where D = diag(σ(1)/d1, · · · , σ(p)/dp).

　

Proof. If we put ˆ(αβ) = ˆ(αβ)(X111, · · · ,XIJn), we may show

ˆ(αβ)(X111, · · · ,XIJn) = ˆ(αβ)(e111, · · · , eIJn) + (αβ),

where (e111, · · · , eIJn) is defined in (1.1). We assume for convenience

µ = α1 = · · · = αI = β1 = · · · = βJ = αβ11 = · · · = αβIJ = 0.(5.1)

Let us define the solution of system of the following equations by µ̂∗(�)
ijj′ .

M

(�)
ijj′ (Op×1, Op×1,ρ) = 2

√
nd� · µ(�)

ijj′/σ
(�) for all �’s, i’s, j’s and j′’s.(5.2)
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√
n|µ̂(�)

ijj′ − µ̂
∗(�)
ijj′ | P−→ 0 for all i’s, j’s and j′’s.(5.3)

By combining the definition of ˆ(αβ)ij with (5.3), it follows that

√
n ˆ(αβ)ij ∼ √

n{2
J∑

j′=1

µ̂∗
ijj′/J − 2

I∑
i=1

J∑
j′=1

µ̂∗
ijj′/(IJ)},(5.4)

where µ̂∗
ijj′ = (µ

∗(1)
ijj′ , · · · , µ̂∗(p)

ijj′ )
′ and VN ∼ WN denotes VN −WN

P−→ 0. By using (5.2) and (5.4),

√
n ˆ(αβ) ∼ DM(Op×IJ , Op×IJ ,ρ),(5.5)

M(Op×IJ , Op×IJ ,ρ) is defined by (2.5). Since, by using the multivariate central limit theorem,

vec{DM(Op×IJ , Op×IJ ,ρ)} has asymptotically NpIJ(0,Λ ⊗ (DΓD)), (5.5) implies √n · vec{ ˆ(αβ)} L−→
NpIJ(0,Λ⊗ (DΓD)). Hence the assertion is established. ✷

　

Theorem 5.2. Suppose that the conditions (c.1’) and (c.2)-(c.4) are satisfied. Then
√
n ·vec(β̂−β) has

asymptotically a pJ-variate normal distribution with mean 0 and variance-covariance matrix Λ∗
J⊗(DΓD).

　

Proof. If we put β̂ = β̂(X111, · · · ,XIJn), we may show

β̂(X111, · · · ,XIJn) = β̂(e111, · · · , eIJn) + β.

We assume (5.1) for convenience. By combining the definition of β̂j with (5.3), it follows that

√
nβ̂j ∼ 2√n

I∑
i=1

J∑
j′=1

µ̂∗
ijj′/(IJ),(5.6)

where µ̂∗
ijj′ = (µ

∗(1)
ijj′ , · · · , µ̂∗(p)

ijj′ )
′ is defined in (5.2). By using (5.2) and (5.6),

√
nβ̂ ∼ DM∗(Op×IJ , Op×J ,ρ)/I,(5.7)

M∗(Op×IJ , Op×J ,ρ) is defined by (2.7). Since, by using the multivariate central limit theorem,

vec{DM∗(Op×IJ , Op×IJ ,ρ)/I} has asymptotically NpJ (0,Λ∗
J ⊗ (DΓD)/I), (5.7) implies

√
n · vec{β̂} L−→ NJp(0,Λ∗

J ⊗ (DΓD)/I). Hence the assertion is established. ✷

　

Theorem 5.3. Assume that ψ∗
� (−x) = −ψ∗

� (x) for all �’s and f(x) is diagonally symmetric. Then

under the conditions (c.1’) and (c.2)-(c.4),
√
n(µ̂−µ) has asymptotically a p-variate normal distribution

with mean 0 and variance-covariance matrix DΓD/(IJ). Furthermore
√
n(µ̂ − µ),

√
n · vec(α̂ − α),

√
n · vec(β̂ − β) and

√
n · vec( ˆ(αβ)− (αβ)) are asymptotically independent.
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Proof. We assume (5.1) for convenience. By using Theorem 3.6, as in the proof of Theorem 5.2, we can

show

√
nµ̂ ∼ 1

IJ
D(M �(1)(Op×IJ , Op×1,ρ), · · · ,M �(p)(Op×IJ , Op×1,ρ)).(5.8)

Since the multivariate central limit theorem implies that

D(M �(1)(Op×IJ , Op×1,ρ), · · · ,M �(p)(Op×IJ , Op×1,ρ)) has asymptotically Np(0, IJ ·DΓD), (5.8) implies
√
n · µ̂

L−→ Np(0, DΓD/(IJ)). Hence the first assertion is established. The asymptotic covariances of
√
n · µ̂, √n ·vec{α̂}, √n ·vec{β̂} and √

n ·vec{α̂β} are null. Therefore the second assertion is found. ✷

6 Asymptotic Robustness

　We investigate the asymptotic relative efficiencies (ARE’s) of the proposed tests and estimators with

respect to the normal theory tests and the LSE’s. Since the ARE’s for p ≥ 2 are complicated, at first

we give the ARE’s for p = 1. The normal theory F -tests were reviewed in Chapter 7 of Dunn and Clark

[1]. It is simple to verify that (the normalized likelihood ratio F -test statistic) L−→ χ2
(I−1)(J−1) under H

and
L−→ χ2

(I−1)(J−1)(η
2) under An, where η2 =∆ · ∆′/σ2. Also we can find that

√
n(X̄11.− X̄1..− X̄.1.+ X̄..., X̄12.− X̄1..− X̄.2.+ X̄..., · · · , X̄IJ .− X̄I ..− X̄.J .+ X̄...)′

L−→ NIJ(0, σ2 · Λ). Combining these facts with Theorems 4.2 and 5.1, we get

ARE(MT,F − test) = ARE( ˆ(αβ), ˜(αβ))

= {
∫ ∞

−∞
ψ1(

x

ρ
)f ′(

x

σ
)dx}2/

∫ ∞

−∞
{ψ1(

x

ρ
)− ψ̄1}2dF (

x

σ
),(6.1)

where ARE(C,D) stands for the asymptotic relative efficiency of C with respect to D. Assume that

ψ1(−x) = −ψ1(x) and f(−x) = f(x) for all x. Then the ARE is equivalent to the classical ARE-result

of the one-sample M -estimator with respect to the one-sample mean.

Furthermore when the class of ψ1(x) is restricted to

{ψ1(x) : ψ1(−x) = −ψ1(x), ψ1(x) = ψ1(d) for x > d > 0}, the choice of ψ1(x) which gives maximin

asymptotic power of the M -test over the class of the distributions that f(x) is in ε-contamination neigh-

borhood {f (x) = (1 − ε)f0(x) + εh(x): f0(x) is a fixed symmetric density and h(x) is any symmetric

density } and minimax asymptotic variance of the M -estimator is reviewed by Section 4.6 of Huber

(1981). Also the choice of ψ1(x) over the class of the distributions that f(x) is in ε-Kolmogorov neighbor-

hood {f (x) : supx |F (x)− F0(x)| ≤ ε, F0(x) is a fixed distribution function, f(−x) = f(x) = F ′(x), and

12
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tests and estimators for main effects remains the same too.

Next we investigate ARE’s of the proposed estimators with respect to the LSE’s for p ≥ 2. For two

sequences of estimators {Un} and {V n} for θ so that
√
n(Un −θ) and

√
n(V n −θ) have asymptotically

mp-variate normal distributions with null mean vector and variance-covariance matrix Σ0 ⊗ ΣU and

Σ0 ⊗ ΣV respectively, Shiraishi (1989) defined the ARE of Un relative to V n by ARE(Un,V n) =

{|ΣV |/|ΣU |}1/p, where ΣU and ΣV are nonsingular p×p matrices. In the case p=1, this definition of the

ARE is equivalent to the Pitman ARE. When Σ0 is nonsingular, it is equal to the ARE defined by Puri

and Sen (1985). After simple argument, we can draw
√
n · vec( ˜(αβ) − (αβ)) L−→ N(0,Λ ⊗ Var(e111)),

where Var(e111) stands for the variance-covariance matrix. Combining this fact with Theorem 5.1, we

get ARE( ˆ(αβ), ˜(αβ)) = {|Var(e111)|/|(DΓD)|}1/p. Especially when F (x) =
∏p

�=1 F�(x(�)) for x =

(x(1), · · · , x(p)), the ARE is given by

ARE( ˆ(αβ), ˜(αβ)) = ARE(β̂, β̃) =

(
p∏

�=1

[{
∫ ∞

−∞
ψ�(

x

ρ(�)
)f ′

�(
x

σ(�)
)dx}2/

∫ ∞

−∞
{ψ�(

x

ρ(�)
)− ψ̄�}2dF�(

x

σ(�)
)]

) 1
p

,

which is nearly equal to (6.1).

7 Simulation Study for Estimators

　The risk for an estimator ˆ(αβ) of (αβ) is defined by E{vec( ˆ(αβ)− (αβ))′vec( ˆ(αβ)− (αβ))}. Hence
we define the relative risk efficiency of ˆ(αβ) with respect to ˜(αβ) by E{vec( ˜(αβ) − (αβ))′vec( ˜(αβ) −
(αβ))}/E{vec( ˆ(αβ)−(αβ))′vec( ˆ(αβ)−(αβ))}, which is denoted by RRE( ˆ(αβ), ˜(αβ)). Under a suitable

condition, we may find

lim
n→∞RRE( ˆ(αβ), ˜(αβ)) = ARE( ˆ(αβ), ˜(αβ)).

If RRE( ˆ(αβ), ˜(αβ)) > 1 (<), ˆ(αβ) is better (worse) than ˜(αβ). We compare the risks, based on

quadratic loss, of the robust estimators and LSE’s due to the Monte Carlo simulation. We limited

attention to n = 5, 10 and I = J = 3. The underlying distribution chosen here were contaminated

normal; 0.9Φ(x)+0.1Φ(x/
√
10), the mixture of the normal and outlier; 0.95Φ(x)+0.05I[10,∞)(x), standard

normal, logistic with variance 1, double exponential with variance 1 and lognormal. For each setting,

2, 000 replications were used.

From Table 1, we can see that the proposed estimators are more efficient than the LSE’s except the

case that an undelying distribution is normal. Especially the proposed estimators are fairly efficient for

the asymmetric distributions.
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Table 1: The values for the relative risk efficiency of proposed estimators with respect to LSE’s

F (x) N = 5 N = 10
β (αβ) ν β (αβ) ν

Φ(x) 0.94 0.93 0.95 0.93 0.92 0.94
0.9Φ(x) + 0.1Φ(x/3) 1.29 1.27 1.25 1.34 1.34 1.34

0.95Φ(x) + 0.05I[5,∞)(x) 1.33 1.33 1.92 1.49 1.50 2.94
logistic 1.04 1.05 1.03 1.07 1.07 1.09

double exponential 1.21 1.23 1.20 1.30 1.30 1.32
lognormal 1.84 1.82 0.94 2.38 2.40 0.46

Acknowledgement: The author is grateful to the referee for valuable comments.
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