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1. Introduction 
   Path analysis is usually performed for continuous variables by using linear 
regression equations (Asher 1976), and the basic idea is applied to the analysis of causal 
systems of continuous variables, LISREL model (Jöreskog and Sörbom, 1988). In 
comparison with path analysis of continuous variables, that of categorical variables is 
complex, because the causal system under consideration cannot be described by linear 
regression equations. Goodman (1973a, b, 1974) considered path analysis of binary 
variables by using logistic regression models (Cox, 1970), and discussed the effects by 
logit parameters. Hagenaars (1998) made a general discussion of path analysis of 
recursive causal systems of categorical variables by using the directed loglinear model 
approach that is combined Goodman’s approach and Graphical modeling. Although the 
approach is an analogy to LISREL approach, the discussion of the direct, indirect and 
total effects was not made. 
   In this paper, we provide a method of path analysis of categorical variables. Path 
analysis is discussed in structural logistic regression models. We give definitions of the 
direct, indirect and total effects, and the effects are explained in terms of log odds ratios. 
A numerical example is also given to illustrate the present approach. 
 
2. Effects of explanatory variables in logistic regression models without interactive 
terms 
   Let Xi (i =1,2,…,k) be categorical variables having categories {1,2,…,Ii}. Assume 
that the structural relationship between Xk and Xi (i =1,2,…,k-1) in Fig.1 is expressed by 
a logistic regression model without interactive terms. Let Xpa(k) = (X1,X2, …,Xk-1)’; and 
let p(xk | xpa(k)) be the conditional probability of Xk = xk given Xpa(k) = xpa(k). Then, the 
logit model is given as follows: 

k-1 
(2.1)       Log[p(xk | xpa(k)) /{1- p(xk | xpa(k))}] = αxk + Σβixixk.                                

i=1 

In considering structural relationships among variables concerned, logistic regression 



models are referred to as structural logistic regression models in the present paper. In 
the above model, we introduce the following dummy variables: 

Xij = 1 (if Xi = j) and Xij = 0 (if Xi ≠ j)  (j = 1,2,…,Ii: i =1,2,…,k). 
Random dummy vector Xi = (Xi1, Xi2,…, XiIi)’ and the corresponding categorical 
variables are identified. Then, model (2.1) is rewritten as follows: 

k-1 
(2.1)       Log[p(xk | xpa(k)) /{1- p(xk | xpa(k))}] = xk’ααααk + Σ xk’ΒΒΒΒi xi,                            

i=1 

where ααααk andΒΒΒΒi are a vector and a matrix corresponding to parametersαxk and βixixk, 
respectively. The log odds ratio of Xk = xk over Xk = xk* is given by                                

k-1 
(2.2)   log OR(xk, xk* ; xpa(k),xpa(k)*) =Σ trΒΒΒΒi(xi－xi*)(xk－xk*)’.                                
                               i=1 

When we formally substitute the baselines xk* and xpa(k)* for the expectations μk* and 
μμμμpa(k) respectively, we have 

k-1 
(2.2)   log OR(xk,μk ; xpa(k),μμμμpa(k)) =Σ trΒΒΒΒi(xi－μi)(xk－μk)’.                                 
                               i=1 

The above quantity can be viewed as the log odds ratio. First, the total effect of xpa(k) on 
xk is defined by 
(2.3)         eT(xpa(k) → xk) = log OR(xk,μk ; xpa(k),μμμμpa(k)). 
Secondly, the direct effect of xi on xk is defined by 

     ed(xi→ xk) = trΒΒΒΒi(xi－μi)(xk－μk)’.                                           
This quantity can be regarded as the partial log odds ratio with respect to xi and xk given 
other variables, and is denoted by log OR(xk,μk; xi,μi|μμμμpa(k),xi+1, xi+2,…, xk-1). Thirdly, 
the total effect of xi on xk is defined by 
(2.4)  eT(xi→ xk) = log OR{xk,μk ;(xi,μi+1(xi),…,μk-1(xi)),(xi,μi+1,…,μk-1)|μμμμpa(i)} 

k-1 
 =ΒΒΒΒi(xi－μi)(xk－μk)’ + Σ trΒΒΒΒj(μj(xi)－μj)(xk－μk)’.                        

                                    j=i+1 

The first term is the direct effect of xi on xk, so the indirect effect is defined by the 
second term: 
(2.4)  eind(xi→ xk) = log OR{xk,μk ;(xi,μi+1(xi),…,μk-1(xi)),(xi,μi+1,…,μk-1)|μμμμpa(i)} 

k-1 
 = Σ trΒΒΒΒj(μj(xi)－μj)(xk－μk)’.                                           

                 j=i+1 

In the above consideration, the direct, indirect and total effects can be interpreted 
through log odds ratios. With respect to the indirect effect, we have the following 
theorem: 
   Theorem 1. If Xi and Xj are independent, then 

eind(xi→ xk) = 0. 



   Proof. If Xi and Xj are independent, we get μj(xi) =μj. From (2.4) the theorem 
follows.   □ 
 
Lastly, the average effects are defined in order to summarize the effects defined above. 
The expectation of (2.4) is 

k-1 
E{eT(Xi→Xk)} = trΒΒΒΒi{Cov(Xi,Xk)} + Σ trΒΒΒΒj{Cov(μj(Xi),μk(Xi))}.                        

                                    j=i+1 

This is the average total effect. The first and second terms are the average direct and 
indirect effects, respectively. 
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       Figure 1. Path Diagram of a Fully Recursive Causal System of Variables 
 
3. Numerical example 

Table 1. Data of Primary Food Choice of Alligators by Lake and Size 
 
                                        Food 
    Lake         Size     Fish   Invertebrate  Reptile   Bird   Other 
                 
   Hancock      small      23        4         2       2      8 
                large       7        0         1       3      5 
   Ocklawaha    small       5       11         1       0      3 
                large      13        8         6       1      0 
   Trafford      small       5       11         2       1      5  
                large       8        7         6       3      5 
   George       small      16       19         1       2      3 
                large      17        1         0       1      3 
 
 



   Table 1 shows the data for an investigation of factors influencing the primary food 
choice of alligators (see Agresti, 1990, pp. 307-310). In this example, X1 = Lake: lakes 
that alligators live; X2 = Size: sizes of alligators; and X3 = primary foods of alligators. 
The structural relationships among variables are shown in Fig. 2. In order to show the 
present approach, the structural relationship between Food and (Lake,Size) is considered. 
The estimated average effects of Lake and Size on Food are shown in Table 2. The 
details are omitted for want of space. 
 
Table 3. Average Effects of Size and Lake on Food 
                                                    Size 
               Direct   Indirect    Total 
                                                                Food 
      Size     0.085   --------     0.085         Lake            
      Lake     0.221   -0.015     0.206       Figure 2. Path Diagram of Lake, 
                                              Size and Food 
                           
4. Conclusion 
   This paper has provided a method of path analysis of categorical variable. The total, 
direct and indirect effects have been defined. The effects defined in this paper can be 
interpreted in terms of (i) log odds ratios; (ii) changes of uncertainty of a response 
variable; and (iii) the inner product of explanatory and response variables. This is an 
advantage of the present approach. It is important to extend the present approach to a 
method for treating more general causal systems of categorical variables, however it 
needs a further discussion following the present study. 
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