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Abstract

In this paper, we use decomposable graphical models to describe the mechanisms of
nonignorable nonresponse in contingency tables classi�ed by two binary variables, and
we discuss identi�cation of parameters in these models. For an unidenti�able model,
we propose adding covariates which are always observed such that this model becomes
identi�able.

1. Introduction

Contingency tables with nonresponses have been discussed by many authors. Accord-
ing to the terminology of Little and Rubin (1987), the nonresponse mechanisms can be
classi�ed into three types: missing completely at random (MCAR), missing at random
(MAR) and nonignorable nonresponse mechanisms. The MCAR and MAR nonresponse
mechanisms are also said to be ignorable. Fay (1986) discussed nonignorable nonresponse
mechanisms and used an indicator for each variable which is subjected to nonresponse.
Baker and Laird (1988) developed a log linear model for categorical variables subject to
nonresponse. Baker (1992) provided a class of models of nonresponse mechanisms with
closed form estimates of cell probabilities. Molenberghs et al. (1999a, b) discussed some
issues on models with incomplete categorical data, including identifying of parameters and
so on. Glonek(1999) presented necessary and su�cient conditions of global identi�ability
for simple nonignorable nonresponse models with one or two binary responses. In this
paper, we use decomposable graphical models to describe the mechanisms of nonignorable
nonresponse in contingency tables classi�ed by two binary variables, and we discuss iden-
ti�cation of parameters in these models. For an unidenti�able model, we propose adding
covariates which are always observed such that this model becomes identi�able.

Section 2 introduces some notations. Section 3 discusses identi�cation of nonresponse
mechanisms for 2 � 2 contingency tables subject to nonresponses. Section 4 discuss esti-
mates of the parameters.

2. Notation

Let (Y1; Y2) denote the response vector with Yt = 0 or 1 for t = 1; 2. We introduce a
response indicator Rt with value 1 if the response Yt is obtained and 0 otherwise. We use
decomposable graphical models to describe the association among the four variables: Y1,



Table 1: Observed data subject to nonresponses.
n0011 n0111
n1011 n1111

n0+10
n1+10

n+001 n+101 n++00

Y2, R1 and R2. Let G = (V;E) denote an undirected graph where V = fY1; Y2; R1; R2g is
the set of nodes and E are the set of undirected edges between these nodes. The absence
of an edge between a pair of nodes means that the corresponding variables in this pair
are independent conditionally on the other variables. A graph is decomposable if it does
not has any cycle of length than or equal to 4 without a chord. A decomposable graph
denotes a decomposable graphical model. Let M(G) denote the set of all possible joint
probabilities based on the graphical model G.

Observed data can be denoted as Table 1, where nijkl denotes the observed frequency
for Y1 = i, Y2 = j, R1 = k and R2 = l, and `+' denotes that the corresponding variable is
missing. For example, n1+10 denotes the frequency for Y1 is observed with value 1 but Y2
is missing.

3. Identi�ablity of Parameters

If any joint probability of Y1, Y2, R1 and R2 in M(G) is identi�able, then we say that
the model G is Y R-identifable. In this paper, we only discuss decomposable graphical
models. Figure (2) shows the eighteen possible decomposable graphical models.
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Figure 2. Eighteen composiable graphs

These eighteen graphs are classi�ed into four types 
i for i = 1; : : : ; 4. In 
1, there
are no edges between the response indicator R and the response variable Y . Thus the
responses R1 and R2 does not depend on the true value of the response variables Y1 and
Y2. The mechanism of nonresponse (a) is MCAR, and the mechanism (b) is MAR. Both
of them are ignorable. The parameter of these two models are identi�able.

Theorem 1. For the subgraphs in the set 
2, we have that

1. any of graphical models (c), (d) and (h) is Y R-identi�able if and only if Y1/ Y2;

2. all graphical models (e), (f) and (g) are Y R-identi�able; and

3. the graphical model (i) is Y R-identi�able if and only if Y1/ Y2 or R2/ Y1.

There are eight observed data, but parameters in 
3 have more than eight degrees of



freedom. Thus they are nonidenti�able. In this situation, we can introduce some covariates
to identify the parameters.
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Figure 3.

For graphs (j), (k), (l) and (m), we introduce a covariate which is always observed with
two values such that X (Y1; R1; R2)jY2, as shown in Figure 3 (j'), (k'), (l') and (m').



Theorem 2. If X / Y2, then the graphical models (j'), (k'), (l')and (m') are Y RX-
identi�able (i.e., P (y1; r1; y2; r2; x) is identi�able).

For graphs (n )and (o), we introduce a binary covariateX1 such thatX1 (Y2; R1; R2)jY1,
and another binary covariate X2 such that X2 (Y1; R1; R2)jY2, as shown in �gure 3.

Theorem 3. If X2/ Y2 and X1/ Y1, then the graphical models (n') and (o') are
Y RX1X2- identi�able (i.e., P (y1; r1; y2; r2; x1; x2) is identi�able).

For graph (p), we introduce a always observed variable X with two values such that
X (R1; R2; Y2)jY1. We have graph (p') as shown in �gure 3.

Theorem 4. IfX / Y1, then the graphical model (p') is Y RX-identi�able(i.e., P (y1; r1; y2; r2; x)
is identi�able).

For the graphs (q) and (r), we introduce a binary covariate X as shown in �gure 3 (q')
and (r'), where X satisfy the condition that X / (R1; R2)j(Y1; Y2).

Theorem 5 IfX / Y2jY1, then the graphical models (q') and (r') are Y RX-identi�able
(i.e., P (y1; r1; y2; r2; x) is identi�able).

An interest measure of association is the odds ratio in the margin table classi�ed by
Y1 and Y2 de�ned as

OR:: =
P (Y1 = 0; Y2 = 0)P (Y1 = 1; Y2 = 1)

P (Y1 = 0; Y2 = 1)P (Y1 = 1; Y2 = 0)
:

The odds ratio OR11 = P (Y1 = 0; Y2 = 0jR1 = 1; R2 = 1)P (Y1 = 1; Y2 = 1jR1 = 1; R2 =
1)=[P (Y1 = 0; Y2 = 1jR1 = 1; R2 = 1)P (Y1 = 1; Y2 = 0jR1 = 1; R2 = 1)] describes the
association in the complete response subpopulation with R1 = R2 = 1. Assume that
the complete response probability P (R1 = R2 = 1) is positive and larger than a given
constant.

Theorem 6 For the graphical models in 
1, 
2 and the graph (p) in 
3, we have
that OR:: = OR11 and that ^OR11 = n0011n1111=(n1011n0111) is a strong consistent estimate
of OR::, where nijkl is the observed frequency of Y1 = i, Y2 = j, R1 = k and R2 = l.
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