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Abstract. Deforestation is a result of complex causality chains in most cases. But identifi-
cation of limited number of factors shall provide comprehensive general understanding of the vital
phenomenon at a broad scale, as well as projection for the future. Only two factors — human pop-
ulation and relief energy (difference of minimum altitude from the maximum in a sampled area)
— were found to give sufficient elucidation of deforestation by a model, whose functional form was
verified by linear combinations of dummy variables. Likelihood with spatial dependency was derived
and applied to real data of one-kilometer spatial resolution, with which our model showed the best
relative appropriateness.
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1. Introduction. Terabyte-scale information from multispectral sensors and mi-
crowave radiometers is rapidly increasing through remotely-sensed measurements,
such as ozone concentration, water vapor, soil moisture as well as traditional land-
cover and surface temperature. Yet interrelations of such information with other data
are insufficiently studied in terms of mathematical models of socio-economic causality
to terrestrial surfaces [4].

Increases of cultivated land for cash crops, grazing of cattle, shifting cultivation,
logging, and fuel-wood requirements in developing countries as well as airborne pollu-
tants and acid rain in developed nations should be major driving force for deforestation
[5]. That means almost all the causes are strongly related to human activities [4].

In this research, we incorporated the typical human factor of population into forest
coverage ratio by applying grid-cell data. We assume that the process of deforestation
has strong dependency on human population in the same area.

We consider one-kilometer square area on the earth. Let N be the population,
and R be the relief energy. Here, R denotes difference of minimum altitude from the
maximum. Also let F ≡ F (N,R) be the forest areal rate which includes open forest
(0 ≤ F ≤ 1). In [8], we discussed the relation between F and N observed at areas
with small R not greater than 20 meters in Japan. Based on 107 samples, we selected
the following non-linear regression model:

F (N,R) = γ exp
¡−αN2

¢
+ e, (0 ≤ R < 20)(1.1)

where e is an independent error, α is a positive deforestation coefficient, and γ is a
positive constant. See Appendix for the theoretical derivation of (1.1) by a differential
equation. Forest relative reduction rate is assumed to increase in a certain proportion
to the human population growth in an area.

Our previous research, however, has at least two drawbacks:

• Since the model (1.1) is valid only for regions with small relief energy R, an
extended model applicable for any values R is required. It is known that
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Table 2.1
Basic statistics of two datasets.

Variable Mean Minimum value Maximum value Standard deviation

Dataset I (0 ≤ F ≤ 1, sample size: 8697)
F 0.7730 0.000 1.000 0.2643

N 334.0 0.000 55,050 1,367
R 154.5 0.000 580.0 86.11

Dataset II (0 < F ≤ 1, sample size: 8538)
F 0.7874 1.138×10−4 1.000 0.2446
N 288.8 0.000 22,070 1,091

R 157.1 0.000 580.0 84.52

geological features such as elevation and slope of a region are more important
than climate variables [3].

• Data were assumed to be spatially independent. Spatial correlation should
be incorporated in the extended model.

For discussing these points, we suppose that the forest areal rate F (N,R) is expressed
by the following additive model:

F (N,R) = g(N) + h(R) + e(1.2)

where the errors e are spatially correlated. The spatial model (1.2) is an extension of
the model (1.1).

2. Identification of Trend Functions with Independent Errors. Figure
2.1 illustrates a location of our test field, and it also shows spatial maps of the vari-
ables. We use two datasets. One named Dataset I has all range of F , whereas the
other called Dataset II omits data with F = 0. The reason for this is that areas
with no forests in the test field are either very urbanized, or large agricultural fields
including cattle ranches. The land-use types are known to cause anomaly in analysis
since the development patterns are different in terms of deforestation [7]. Table 2.1
gives the basic statistics of the two datasets. For the preparation of them, see also
[7].

2.1. Estimation of Functional Forms. The regression model (1.1) holds only
for data with small R. Our datasets include the data with large R, so the estimation
procedure of parameters in the model (1.1) hardly converges. This implies that the
effect due to R in the model (1.2) is not negligible. Thus we need to specify the
functional form of h(R). We first approximate h(R) by a step function, say h0(R),
over 16 intervals r0 = 0 < r1 = 20 < r2 = 40 < r3 = 60 < · · · < r15 = 300 < r16 =∞,
i.e.,

h0(R) = ωi if ri−1 ≤ R < ri for i = 1, 2, · · · , 16.(2.1)

Here, ω1 is set to zero as a baseline. By using the regression model:

F (N,R) = γ exp
¡−αNβ

¢
+ h0(R) + e(2.2)

for Dataset I, we get a preliminary functional form of h(R) shown in Fig.2.2. The
figure strongly indicates that forest rate increases by a logarithmic function of relief
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Fig. 2.1. Location of test field and maps of variables: (a) test field, (b) forest coverage ratio
F , (c) population density N , (d) relief energy R. In each map from (b) to (d), altitude is overlaid
with corresponding variables. (Originally in color)

energy R. Hence, we fit the parametric functions for h(R):

h1(R) =

½
δ log(R− θ + 1) if R > θ
0 if 0 ≤ R ≤ θ

(2.3)

h2(R) =

½
δ log(R/θ) if R > θ
0 if 0 ≤ R ≤ θ

(2.4)

For the effect g(N) due to population N , we will confirm the relation (1.1) for
the Dataset I. We similarly approximate g(N) by a step function, say g0(N), over 9
intervals 0 = n0 < n1 < n2 < · · · < n9 =∞, i.e.,

g0(N) = ψi if ni−1 ≤ N < ni for i = 1, 2, · · · , 9 with ψ1 = 0.(2.5)

Actually, eight terminal points ni are determined as follows: log(n1 + 1), log(n2 +
1), . . . , log(n8 + 1) are respectively set by 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0 for
taking balances of sample sizes in the intervals into account.

By fitting the regression model:

F (N,R) = g0(N) + h2(R) + e(2.6)

to Dataset I, g(N) is roughly estimated by the step function shown in Fig.2.3. This
figure shows that the functional form of g(N) is close to g2(N) which was already
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selected in regions with small R.
Thus, the following candidate models for g(N) are examined:

g1(N) = γ exp(−αN), g2(N) = γ exp
¡−αN2

¢
, gβ(N) = γ exp

¡−αNβ
¢
.(2.7)

Fig.2.2. Estimated step function h0(R)
for Dataset I with (R, h0(R)). Estimated val-
ues are marked as square, and smooth line
indicates the estimated function h2(R) based
on the model E[F ] = gβ(N) + h2(R).

Fig.2.3. Estimated step function g0(N)
for Dataset I with (log(N + 1), g0(N)). Es-
timated values are marked as cross in a cir-
cle, and smooth line indicates the estimated
function gβ(N) based on the model E[F ] =
gβ(N) + h2(R).

2.2. Model Selection under Independent Assumption. Ordinary non-linear
parameter estimations are employed first. The initial values are carefully determined
by grid search.

Many criteria to select the best model in regression are proposed in the literature,
and it is known that the cross-validation, FPE and AIC have the same asymptotic
properties, see e.g., [6]. Among candidate statistical models, Akaike’s Information
Criterion (AIC) prefers the model which minimizes the value. In the normal regression
model with k explanatory variables, it is known that AIC is reduced to n log bσ2+2(k+
1), where n is a sample size and bσ2 is the maximum likelihood estimate of the variance
σ2 [1].

Table 2.2 shows the comparative result by AIC. Model 1 with a large number of
parameters is chosen among the independent models from Model 1 to Model 9.

Nonetheless, from the viewpoint to obtain tractable functional forms, we selected
Models 8 and 9 as viable candidate for further investigations by spatial model (Models
10 and 11 will be discussed in Section 3.3). We note that if the estimated mean value
E[F (N,R)] exceeds 1.0, then it is truncated to 1.0 for all models.

3. Parameter Estimation with Spatially-Dependent Errors.

3.1. Spatial Model for Rectangular Region. Let Fij be forest coverage rate
at image coordinate (i, j), i = 1, 2, · · · ,m; j = 1, 2, · · · , n, and let µij = µij(β) be the
expected values of Fij specified by a parameter vector β. In the previous section, we
fit six continuous regression models other than the models with step functions. If we
take a model E [F (Nij , Rij)] = µij(β) = g2(Nij) + h1(Rij), the unknown parameter
vector β is given by (α, γ, δ, θ)0, see (2.3) and (2.7) as an example of the elements of
β.
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Table 2.2
Comparison of models by AIC (34000 is added to AIC values below).

Numerals with asterisk(s) denote the best three ranking.

Model ] of AIC

ID Regression Models param. Dataset I Dataset II

1 gβ(N) + h0(R) 18 657.0∗ -11.0∗
2 g0(N) + h1(R) 12 807.2 68.7
3 g0(N) + h2(R) 12 763.8 39.6

4 g1(N) + h1(R) 4 824.0 448.3
5 g1(N) + h2(R) 4 777.0 343.2
6 g2(N) + h1(R) 4 1172.1 992.7
7 g2(N) + h2(R) 4 1111.0 880.8
8 gβ(N) + h1(R) 5 772.4 97.0
9 gβ(N) + h2(R) 5 722.8 35.7

10 gβ(N) + h1(R) 6 285.3∗∗ -204.8∗∗
11 gβ(N) + h2(R) 6 196.6∗∗∗ -497.3∗∗∗
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: mn× 1

Fig.3.1. Adjacency in grid cells. Fig.3.2. The vector notation.

Fig.3.3. An example of rectangular data. Fig.3.4. Data with missing values.

Let F : mn×1 be a vector of forest rates observed at the rectangular regions with
size m×n, see Fig. 3.2. Also, let H be an mn×mn adjacency matrix whose rows and
columns are corresponding to the indices of the column vector F . Namely, entries of

H are defined by 1 if two cells are adjacent, otherwise they are defined by 0. Hence,

H is symmetric, and the sum of row is equal to four if the row is corresponding to

the inner points of the rectangular. For example, a region like Fig. 3.3, its adjacency
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matrix H shall be given by (3.1).

H =



0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0



, A4 =

 0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , A5 =

 0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

(3.1)

The adjacency matrix of rectangular data like this case can be simply expressed by

using Kronecker product as H = A5 ⊗ I + I ⊗A4, see (3.1).

Taking the influence of the neighborhood into account, we assume that the con-

ditional distribution of Fij with values for given adjacent cells is expressed by the

following normal distribution:

[ Fij | Fi−1,j , Fi+1,j , Fi,j−1, Fi,j+1]

∼ N ¡µij + φ(ηi+1,j+ηi−1,j+ηi,j+1+ηi,j−1), σ
2
¢

(3.2)

where ηij = Fij − µij and so on (see Fig. 3.1). Parameter φ captures the spatial
dependency. It should be noted that the spatial model (3.2) is reduced to ordinary

regression model considered in the preceding section when φ = 0.

Now, by the conditional distribution (3.2), we have the joint distribution of the

forest coverage vector F , see Chapter 6 of [2]. The joint distribution is an mn-variate

normal with the mean vector µ ≡ µ(β) : mn× 1 and the variance-covariance matrix
σ2(I − φH)−1, where µ is constituted by the means µij . The likelihood function, say

L(β,σ2,φ), is therefore given by

L(β,σ2,φ) = (2πσ2)−mn/2|I − φH |1/2 exp{−Q(β,φ)/(2σ2)}(3.3)

where

Q(β,φ) = {F − µ(β)}0 (I − φH) {F − µ(β)} .(3.4)

The maximum likelihood estimators (MLEs) can be obtained as follows.

Firstly, fix φ. The regression parameter β is estimated by minimizing the quadratic

form Q(β,φ) of (3.4), say bβ = bβ(φ). Then, σ2 is estimated by

bσ2(φ) = Q(bβ,φ)/(mn).
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Secondly, φ is estimated by maximizing the profile likelihood. This is equivalent to

minimize the following function of φ:

−2 logL(bβ(φ), bσ2(φ),φ) = n log(2πe) + n log bσ2(φ)− log |I − φH |,(3.5)

say bφ. Finally, we have the MLE for the parameters by bβ(bφ) and bσ(bφ) by using MLEbφ. Hence,
AIC = mn log(2πe) +mn log bσ2(bφ)− log |I − bφH|+ 2p(3.6)

where p denotes number of unknown parameters under consideration.

3.2. Actual Calculations for Non-Rectangular Data Assembly. Most of

municipal boundaries as well as the inside holes like lakes do not always have a rect-

angular shape. One method for the irregularity is to remove the data on the edge (as

if to peel off an outer shell), and to use the cells only that have four neighbors. But

this strategy loses much information. For effective use of the data, we will illustrate

how to find the adjacency matrix by using Figs. 3.3 and 3.4.

P=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



:20×15, H∗=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0


:15×15(3.7)

Suppose that data are available only at the hatched cells in Fig. 3.4. An adjacency

matrix H of the complete data at which Fig. 3.3 is embedded is given by (3.1). Then,

the matrix P shown in (3.7) denotes a projection matrix from the complete data to

the data with missing values. Then, we can find the adjacency matrix H∗ of Fig. 3.4
is given by

H∗ = P 0HP.(3.8)

Thus, the adjacency matrix of data with missing values can be obtained with less

memory requirements because that of the rectangular data is easily found by Kro-

necker product. Our dataset I with n = 8697 is embedded in the rectangular of size

130× 115, and the adjacency matrix is derived by this process.
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Fig. 4.1. The estimated mean surface of Model 11 for Dataset I. Flat surface is on the truncated

values to 1.0 when E[F (N,R)] > 1.0, see Section 2.2.

3.3. Parameter Estimates and Model Selection. Values of AIC of spatial

models are tabulated in Table 2.2 as Models 10 and 11. Other models are derived

under independent assumptions. It can be seen that the spatial models improve AIC

drastically in both of the Datasets.

In the spatially independent cases, it should be natural to select gβ(N) for the first

term of population. But it is subtle to judge which of the two forms shall be chosen

for the second term of relief, due to small difference of the relative appropriateness

between Models 8 and 9.

In the spatially dependent cases, h2(R) gives nonetheless apparently better result.

Therefore the following model (Model 11) is to be duly selected.

E [F (N,R)] = γ exp
¡−αNβ

¢
+

(
δ log(Rθ ) if R > θ

0 if 0 ≤ R ≤ θ(3.9)

4. Suggestions from Empirical Studies.

4.1. Areas without Forest Cover, Cell Resolution, and Spatial Depen-

dency. Orange groves and warehouses in the coastal region along the sea are identified

as areas without forests, as well as big agricultural lands such as cattle ranches and

paddy fields in the hinterland [7]. Those areas give anomaly to data sampled from

small grid-cells. But consideration to spatial dependence of data should provide sta-

bility, which can be seen in the large reduction of AIC values in models 10 and 11,

compared to the independent cases. This indicates original data with small resolution

can be well utilized by spatial model.

It is reported that adjacency to developed land, and proximity to transportation

networks and major human settlements, are important factors that determine regional

patterns of land development [3]. In these cases, spatial data dependency is strongly
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Table 4.1

Estimated parameters.

Parameter Model 8 Model 9 Model 10 Model 11

Dataset I

α 0.01408 0.01483 0.01838 0.02189

β 0.7264 0.7033 0.6480 0.5950

γ 0.7789 0.7483 0.4731 0.4992

δ 0.09281 0.1678 0.08846 0.1667

θ 27.77 11.52 27.85 13.60

φ — — 0.1559 0.1609

Dataset II

α 0.02727 0.02721 0.02184 0.02580

β 0.5448 0.5300 0.5876 0.5163

γ 0.5453 0.4967 0.5549 0.6243

δ 0.07083 0.1611 0.07310 0.1594

θ 39.08 23.16 29.17 25.84

φ — — 0.1510 0.1610

assumed, and should be applied to the analysis since fragmentation and dispersion of

forests can be taken into account.

4.2. Interpretations of Estimated Parameters. A specific activity such as

“collecting, compiling and regularly updating and distributing information on land

classification and land use, including data on forest cover, areas suitable for afforesta-

tion, endangered species, ecological values, traditional/indigenous land use values,

biomass and productivity, correlating demographic, socio-economic and forest re-

sources information at the micro- and macro-levels, and undertaking periodic analyses

of forest programmes,” was adopted to develop in the Agenda 21 [9]. It is suggested

by this study that the typical socio-economic factor to deforestation can be measured

and compared by region with relation (3.9).

We regard the followings as worth being scrutinized through systematic transdis-

ciplinary studies: the coefficient α to N in relation (3.9) represent a land-cover pattern

reflecting the regional productive structure, and the exponent β represent extent of

population pressure to forests. Demographic cohort composition in the community

would give strong influence to the pressure degree. Forests are well preserved when

both α and β are small compared to population size of the region. We would like

to name α as ‘base trend’ coefficient and β as ‘cohort spurt’ coefficient in terms of

deforestation.

Boundaries to determine the regions are to be defined, but for large-scale analysis

it would be sufficient to use typical climate and apparent economic classification such

as developed region i in temperate zone, developing region j in tropical zone.

5. Conclusions. Drastic improvement of relative appropriateness could be seen

in spatial models. For the term of population, g(N) = γ exp
¡−αNβ

¢
is selected



10 S. TANAKA AND R. NISHII

among many possible candidates. We regard the coefficients α and β could be plain

environmental indicators if we compare αi and βi by region. Namely if the both

coefficients are estimated by region with its suffix i regularly year-by-year (t), then

α = αi(t), β = βi(t):

• cross-sectional comparative comprehension can be visualized at t = tm with

scatter plot, βi(tm) vs. αi(tm), with i = 1, 2, · · · , n where n is a total number
of surveyed regions,

• time-series trend can be observed for a region k by over-plotting βk(t1) vs.
αk(t1), βk(t2) vs. αk(t2), . . . with tracing arrows.

If we obtain smaller α and β chronological values in a region, then the applied envi-

ronmental policy is successful. Problems however remain in the second term of h(R)

with its theoretical aspect. Further verification is necessary applying the relation to

many other forested regions.
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Appendix: Theoretical Modeling. Suppose that relative rate of forest reduc-

tion increases with human population size by the following differential equation:

−F−1dF/dN = νN ξ (F > 0).

where ν is a positive coefficient. The solution is easily obtained by

F = γ exp
¡−αNβ

¢
with α = ν/(ξ + 1), β = ξ + 1.

If the deforestation arithmetically (equivalent expression to linearly) increases with

human population size , ξ = 1, then β = 2.


