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Abstract | We examine classi¯ers of land-cover

categories based on multispectral data. First,

a parameter-estimation method by training data

consisting of pure and mixed cells is discussed.

By actual data, it is shown that the use of mix-

els in the training data improves unmixing results

signi¯cantly. Next, classi¯ers taking spatial con-

tinuity of categories into account are examined

through actual Landsat data. They show an ex-

cellent performance in discrimination, especially

in unmixing.

Key words { linear discriminant function, penal-

ized likelihood, spatial continuity.

I. Introduction

Statistical discriminant procedures based on multi-

spectral images are widely used for land-cover classī ca-

tion. If data follow multivariate normal distributions with

a common variance-covariance matrix, then mean vec-

tors and the variance-covariance matrix are estimated by

training data, and a linear discriminant function (LDF)

will be used for discrimination.

In this case, ordinary methods for parameter estima-

tion use pure cells only in the training data. Hence we

must avoid mixels even though their mixture proportions

of the categories are known. Consequently, only half of

the whole training data or less may be used for parameter

estimation, especially in low-resolution case.

Obviously, such a strategy losses much information on

respective categories, and it is ine±cient to estimate the

parameters based on the sparse pure-cell data. Nishii [6]

proposed an additive model for mean vectors and derived

a parameter-estimation procedure based on multivariate

regression models. We note that the linear unmixing for

estimating category-proportions of a given pixel is a dif-

ferent issue, see Section III for detail.

In this article, we examine a classī er by [6] through

actual data. His parameter-estimation method uses all

information on the training data including mixels. Fur-

ther, the proposed classī er takes spatial continuity of

categories into account. See McLachlan [5] for statistical

image analysis including classi¯cation, and Cressie [1] for

general spatial statistics.

In Section II, the parameter-estimation method based

on training data consisting of pure and mixed cells due

to [6] is illustrated. Then, Section III gives classi¯cation

procedures based on a penalized sum of squared errors

(PSSE). Test data are classi¯ed by taking the spatial

continuity of categories into account. Section IV intro-

duces a measure assessing accuracy of unmixing proce-

dures, which is an extension of the over-all accuracy in

discriminant analysis. Finally, in Section V, the e®ect

of using mixel information is examined through actual

Landsat data, and the e±ciency is shown. Concluding

remarks are given in Section VI.

II. Parameter estimation based on pure and

mixed cells

We take statistical procedures for discrimination or un-

mixing of land-cover categories. Consider K land-cover

categories C1; : : : ;CK . We assume that a p-dimensional

spectral vector z observed at a pure pixel from Ck fol-

lows a p-variate normal distribution with mean vector

¹k : p £ 1 and common variance-covariance matrix § :

p £ p, denoting z » N(¹k;§) for k = 1; : : : ; K. Next, we

assume distributions on mixles as follows.

Let s be a mixel whose proportions covered by the

categories Ck are known as a(k) ¸ 0 for k = 1; : : : ; K withPK

k=1 a(k) = 1. Then, we suppose that a spectral vector

z observed at the mixel s is normally distributed with

mean vector
P

K

k=1 a(k)¹k and § in common. Further, all

spectral data z's are assumed to be independent.

We call a K £1 vector a ´ (a(1); : : : ; a(K))0 a category-

proportion vector of the pixel s, where A0 denotes the

transposition of a vector/matrix A. By the assumption,
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an expected vector of z is expressed by

E(z) =
KX

k=1

a(k)¹k = Ma with M ´ [¹1; : : : ;¹
K
] (1)

where M is a p £K mean matrix. Thus, z » Np(Ma; §).

The relation (1) for training data is considered as a

multivariate regression model with a response vector z

and an explanatory vector a. Hence, the unknown mean

vectors ¹1; : : : ;¹
K

and the unknown variance-covariance

matrix § are estimated through training data.

Consider training data z1; : : : ;zn of size n observed at

pure ormixed cells s1; : : : ;sn, where z® are p-dimensional

vectors for ® = 1; : : : ; n. Let a
(k)
® (k = 1; : : : ; K) denote a

known proportion such that the category Ck covers the

pixel s®. A vector a® ´ (a(1)
® ; : : : ; a(K)

® )0 : K £ 1 is called

a category-proportion vector of s®. Then, by the distri-

butional assumption, z®'s are independently distributed

as normal distributions:

z® » Np(Ma®; §) for ® = 1; : : : ; n: (2)

For the sake of expressing the joint distribution, we de¯ne

a spectral matrix and a category-proportion matrix as:

Z ´
£
z1; : : : ;zn

¤
: p £ n; A ´

£
a1; : : : ;an

¤
: K £ n: (3)

By the distribution (2), an expected matrix of Z is ex-

pressed by MA. Hence, column vectors of a p £ n ma-

trix U ´ Z ¡ MA are independently and identically dis-

tributed with Np(0; §).

Thus, the likelihood function based on the training

data is expressed by

j2¼§j¡n=2 exp
£
¡tr

©
§¡1(Z ¡ MA)(Z ¡ MA)0ª=2

¤
(4)

because it holds
Pn

®=1(z® ¡ Ma®)0§¡1(z® ¡ Ma®) =

tr
©
§¡1(Z ¡ MA)(Z ¡ MA)0ª, where \tr(B)" denotes

the trace of a squared matrix B.

By maximizing (4) with respect to M and §, the ex-

act maximum likelihood estimates (MLEs) are obtained

by [6] as:

cM = ZA0 (AA0)¡1 ´
£
b¹1; : : : ; b¹K

¤
(5)

b§ = Z
©
In ¡ A0 (AA0)¡1

A
ª
Z0±n: (6)

Distributions of the MLE's are also found there. See

Eaton [2] for multivariate linear models.

The MLEs in (5) and (6) are always derived as long

as the rank of the category-proportion matrix A in (3)

is K(· n). If the training data consist of pure pixels

only, then MLE (5) of the mean vector ¹k is nothing but

the sample mean of the observed vectors from Ck. By

numerical studies in Section V, we will con¯rm that the

mixel training data are useful for statistical inference of

the categories.

III. Classifiers derived by penalties

Suppose that we are required to estimate a category-

proportion matrix A¤ of m pixels s¤
1; : : : ;s¤

m by using

spectral data z¤
¯ : p £ 1 observed at the pixels s¤

¯ for

¯ = 1; : : : ;m. Put Z¤ ´ [z¤
1; : : : ; z¤

m] : p £ m. Then, the

MLE of A¤ : K £ m is derived by minimizing the sum of

squared errors (SSE):

Q(A¤) ´ tr
©
§¡1¡Z¤ ¡ MA¤

¢¡
Z¤ ¡ MA¤

¢0ª
(7)

under one of the following conditions:

(D) Discrimination: all entries of bA¤ consist of zero or

one, and 10
K

bA¤ = 10
m.

(U) Unmixing: all entries of bA¤ are non-negative, and

10
K

bA¤ = 10
m.

Consider the case m = 1. Put Z¤ = z¤ and a(k) =

(0; : : : ;
k
1; : : : ;0)0. Then the quadratic form (7) for a(k) is

reduced to Q(a(k)) = (z¤ ¡ ¹k)0§¡1(z¤ ¡ ¹k). Hence,

the minimization of Q(a(k)) with respect to k is equiv-

alent to the classī cation result based on the ordinary

linear discriminant function (LDF). In general, MLE of

the category-proportion matrix A¤ with 0-1 entries coin-

cides with the classi¯cation based on LDF.

When we try to estimate category-proportions

through an observed vector z¤, MLE of the category-

proportion vector a = (a(1); : : : ; a(K))0 is derived by min-

imizing the quadratic form weighted by the inverse matrix

of the variance-covariance matrix § as

Q(a) =
³

z¤ ¡
KX

k=1

a(k)¹k

´0
§¡1

³
z¤ ¡

KX

k=1

a(k)¹k

´
: (8)

A usual unmixing procedure takes the weight matrix in

(8) by the unit matrix, see e.g. Hu, Lee and Scarpace

[3]. Our procedure would be, however, more suitable

because dispersions of spectral variables are normalized.

Note that the formula (8) is the squared Mahalanobis dis-

tance.

However, it is reported by [6] that the estimation

of A¤ by LDF gives poor results because LDF ignores

the spatial-continuity of the categories and the estimated

matrix over¯ts to test data. Using the geometrical in-

formation, a penalized approach to SSE was taken there.

The penalized SSE (PSSE) is as follows:

PS(A¤; ¸) = Q(A¤) + ¸ tr
¡
M 0§¡1MA¤PA0

¤
¢

(9)
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where Q(A¤) is SSE de¯ned in (7), P is an m£m positive

semi-de¯nite matrix assessing the spatial variability of the

categories, and ¸ ¸ 0 is a trade-o® parameter between the

¯tness and the spatial smoothness. A penalized method

for segmentation of intensity SAR images is treated by

Smits and Dellepiane [8].

A. An example of the penalty matrix P

When a test area is a rectangular region of size u£v,

the penalty matrix P : uv £ uv due to [6] is given by

P ´ Du  Iv +Iu  Dv (10)

where

Dt ´

0
BBBBBBBB@

1 ¡1 0 0 ¢ ¢ ¢ 0

¡1 2 ¡1 0 ¢ ¢ ¢ 0

0 ¡1 2 ¡1 ¢ ¢ ¢ 0
...

...
.. .

.. .
. ..

...

0 0 ¢ ¢ ¢ ¡1 2 ¡1

0 0 ¢ ¢ ¢ 0 ¡1 1

1
CCCCCCCCA

: t £ t (11)

for t = u; v. The penalty based on (10) implies that

no penalty is added to SSE if two adjacent pixels be-

long to the same category. If they belong to di®er-

ent categories, for example C1 and C2, then penalty

¸(¹1 ¡¹2)
0§¡1(¹1 ¡ ¹2) is added. Variability of mixels

are similarly evaluated. Thus, P assesses the spatial vari-

ability of the categories of all pairs of two adjacent pixels

(¯rst-order neighborhoods).

In general, the matrix P should be chosen so that the

penalty term of (9) evaluates a sort of quantity orthogo-

nal to SSE.

B. Estimation of category-proportions

The matrix A¤ minimizing PS(A¤; ¸) under the con-

straint 10
K A¤ = 10

m is found by Lagrange's multiplier

method, see [3] for the case without penalty (¸ = 0). Un-

fortunately, this solution of A¤ has negative entries and

shows poor performance by the simulation study due to

[6]. Second approach is to ¯nd the optimal matrix by the

solution of the di®erential equation: @ PS(A¤; ¸)
±
@A¤ =

0. Consequently, we have the matrix equation:

M0§¡1MA¤ = M 0§¡1Z¤ (Im + ¸P )¡1 : (12)

The estimate bA¤ should satisfy one of the two restrictions

(D) and (U) following the formula (7). The solution of the

matrix equation (12) is obtained by m linear equations

derived by respective columns of A¤.

In the case ¸ = 0, bA0 is the MLE of A¤ derived by

LDF, and an estimation procedure in terms of the linear

unmixing is discussed by [3].

C. Other discrimination procedures

Other typical discrimination method is based on

a quadratic discriminant function (QDF). This is de-

rived when the categories Ck are supposed to follow mul-

tivariate normal distributions with respective variance-

covariance matrices, say Np(¹k; §k).

Another method is due to Switzer [9] called the

smoothed method. He introduced the method when the

observed vectors are spatially dependent. But, we review

it under the spatially-independent assumption for use in

Section V. See Mardia [4] for its statistical re¯nement.

s6 s2 s5

s3 s0 s1

s7 s4 s8

Fig. 1. A neighborhood of s0 with eight adjacent pixels

Suppose that we try to discriminate the center pixel

s0. We assume that all pixels in the window of Fig. 1

came from one of the normal populations Np(¹k; §); k =

1; : : : K at the same time (the local-continuity assumption

of the categories). Then, s0 is allocated to the category

Ck which maximizes the joint density function of nine

spectral vectors observed at the window. This method is

abbreviated as Switzer8.

Thus, Switzer's method is based on decision by ma-

jority, whereas PSSE in (9) can be regarded a penalized

likelihood. Prior distributions of the category-proportion

matrix A¤ are found in [6].

D. Other unmixing procedures

The discrimination methods LDF and QDF are also

used for unmixing by using posterior probabilities. By

our normality assumption in Section II, the posterior

probabilities bak such that a vector z¤ came from the cat-

egory Ck are given by

bak = Á(z¤;¹k; §)
. KX

`=1

Á(z¤; ¹`;§) (13)

for k = 1; : : : ; K, where

Á(z;¹;§) = j2¼§j¡1=2 expf¡(z ¡ ¹)0§¡1(z ¡ ¹)=2g

is a density function of Np(¹;§).

If the categories Ck have individual variance-

3



covariance matrices §k , exactly Np(¹k; §k) for k =

1; : : : ; K, the posterior probabilities ~ak are given by

~ak = Á(z¤;¹k; §k)
. KX

`=1

Á(z¤;¹`;§`): (14)

The unmixing procedures (13) and (14) are respectively

abbreviated by PLDF and PQDF.

IV. Accuracy assessment of classifiers

In discriminant analysis, various measures for accuracy

assessment in terms of error matrices are proposed, see

e.g. Nishii and Tanaka [7]. Here, we introduce a measure

for assessment of unmixing. The measure is an exten-

sion of the over-all accuracy and a function of category-

proportion matrices.

Let A¤ =
³

a(k)
¯

´
: K £ m be an actual category-

proportion matrix and bA¤ =
³

ba(k)
¯

´
: K £ m be its es-

timate, where m denotes a sample size of the test data.

Then, the absolute distance between two matrices meets

the inequality:

KX

k=1

mX

¯=1

¯̄
¯ba(k)

¯ ¡ a(k)
¯

¯̄
¯ ·

KX

k=1

mX

¯=1

³
ba(k)

¯ + a(k)
¯

´
= 2m (15)

because
P

K

k=1 a
(k)
¯ =

P
K

k=1 ba(k)
¯ = 1, see the restrictions

(D) and (U). Standardizing (15) and changing the sign,

we de n̄e the goodness of the estimated matrix bA¤ by

g( bA¤;A¤) ´ 1 ¡
KX

k=1

mX

¯=1

¯̄
¯ba(k)

¯ ¡ a
(k)
¯

¯̄
¯
±
(2m): (16)

It holds that 0 · g( bA¤;A¤) · 1, and g( bA¤; A¤) = 1 means

the complete discrimination or unmixing.

In the discrimination case, or equivalently a
(k)
¯ and

ba(k)
¯ take only 0 or 1, we have

1 ¡
KX

k=1

¯̄
¯ba(k)

¯ ¡ a
(k)
¯

¯̄
¯
±
2 =

(
1 correct discrimination

0 wrong discrimination
(17)

for ¯ = 1; : : : ;m: Hence, g( bA¤;A¤) is an averaged value

of (17), and coincides with the over-all accuracy. So, we

call the measure an extended over-all accuracy.

V. Applications to Landsat data

A geocoded Landsat image on December 20th, 1989 in

Saitama, Japan used for our experiment. Using TM data

of 30m resolution for classī cation, we aggregate land-use

data of 10m resolution and yield data consisting of mixels

with nine-level gradient of 30m resolution, see Fig. 2.

30mz }| {9
>>>>>>>>=
>>>>>>>>;

30m

)
10m

10mz }| {

Fig. 2. Resolutions of TM data (left) and of the detailed

digital land-use data (right)

Fifteen land-use categories are transformed and

merged into ¯ve land-cover categories (K = 5): C1 : vege-

tation, C2 : barren grounds (paddy ¯eld), C3 : developed

areas, C4 : residential area, and C5 : water area. Fig. 3

gives the image based on the detailed digital land-use data

of size 9km£9km with 10m resolution. In Fig. 3, pixels

with 10m square are colored by corresponding categories

based on the detailed digital land-use data. There are

90000 pixels with 30m square in the whole area, and the

number of pure cells is only 38901.

We partition the whole area of size 300 £ 300 as

Fig. 3, and set G1a, G1d of size 50 £ 50, G2a of size 100

£ 100, and G3 of size 200 £ 200 to training areas. A test

area is set to T1 of size 100 £ 100 in this experiment.

For assuring the independence between training data

and test data, we choose separate regions. We classify

the test area T1 by using one of the training areas G1a,

G1d, G2a and G3.

We examine the e®ect of mixel information and com-

pare the classi¯ers. Relations between training data used

for parameter estimation and test data classī ed by the

classī ers are summarized in Table 1.

Table 1. Training data and test data used in Tables 2-4.

Test data

Training data pure pixels all pixels

pure pixels Tables 2, 3 Table 3

all pixels Table 3 Tables 3, 4
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Fig. 3. Detailed digital land-use data and par-

tition of the region of size 9km£9km with 10m

resolution, Saitama, Japan, Dec. 1989

A. Discrimination by pure pixels of training data

Using the data, we study how mixel information of

the training data is useful for discrimination. We examine

four classi¯ers: LDF whose result coincides with MLE in

this case, QDF, Switzer8 (see C of Section III for both),

and the proposed PSSE method ( bA¸ with 0-1 entries).

In QDF, the variance-covariance matrices of the cat-

egory Ck is estimated by the sample variance-covariance

matrix of data observed at pure pixels from Ck. Similar

to Switzer8, Switzer4 was also proposed, and we exam-

ined the performance of Switzer4. However, numerical

examples suggest the superiority of Switzer8. Hence, re-

sults on Switzer4 are omitted in this section. In PSSE,

the trade-o® parameter is set by ¸ = K £ rank(P )=p,

where p is a mean of the penalty terms due to randomly-

generated category-proportion matrices.

We discriminate 4433 pure cells in the test area T1

by 1164 pure cells in the training area G1a. The sam-

ple sizes of the training data are given by (n1; : : : ; n5) =

(459;2262;465;777; 470). Error matrices XL;XQ;XS

and XP due to LDF, QDF, Switzer8 and PSSE are re-

spectively obtained by

XL =

0
BB@

179 55 55 126 44

58 1794 252 152 6

34 103 140 159 29
82 33 107 513 42

63 24 93 32 258

1
CCA; XQ =

0
BB@

172 93 41 99 54

62 1979 93 121 7

59 51 215 119 21
116 78 136 405 42

73 33 79 46 239

1
CCA (18)

XS =

0
BB@

234 47 51 116 11

53 1936 174 97 2

33 111 147 171 3

90 22 104 553 8

58 8 120 21 263

1
CCA; XP =

0
BB@

88 74 30 227 40

14 2079 68 95 6

10 119 114 193 29

14 50 67 621 25

19 10 107 48 286

1
CCA: (19)

Rows and columns of the error matrices are correspond-

ing to the ground-truth and the classi¯ed categories re-

spectively. For example, the sum of ¯rst rows of all error

matrices is equal to 459 = n1.

The accuracy of the error matrices is assessed through

the over-all accuracy, the class-averaged accuracy, and the

measure Jpro proposed by [7]. It is de¯ned by entropy as

Jpro ´
KY

k=1

µ
xkk + 1=2

nk + 1=2

¶nk=n

where xkk denote kth diagonal elements of the error ma-

trix and n = n1 + ¢ ¢ ¢ + nK . Accuracy measures of (18),

and (19) are tabulated in Table 2.

Table 2. Accuracy assessment of error matrices
Training data: 1164 pure cells in G1a:50 £ 50
Test data: 4433 pure cells in T1:100 £ 100

Error matrices

Assessments XL XQ XS XP

Over-all .6506 .6790 .7067 .7192*

Class-averaged .5387 .5483 .5906* .5527

Jpro .6190 .6451 .6751* .6346
¤ denotes the best value in each accuracy assessment.

The error matrices (18), (19) and Table 2 imply that

the proposed PSSE gives better results for the categories

C2 and C4, but poor for C1. Thus, PSSE attaches im-

portance to large categories.

B. Discrimination by pure/mixed cel ls

Next, we discriminate pure pixels only or all pixels in

the test area T1 based on pure pixels only or all pixels

in four training areas, see Table 3. Category-proportion

matrices are estimated under the restriction (D) in Sec-

tion III, and discrimination results are assessed by the ex-

tended over-all accuracy (16). In QDF, the mean vectors

are estimated by (5), and respective variance-covariance

matrices are estimated by pure-pixel data from corre-

sponding categories.

The use of mixel information improves all discrimina-

tion results due to LDF and QDF. The procedure PSSE

shows the best performance with small training data, and

QDF comes top with large training data.

Fig. 4 illustrates the discriminated results of the test

area T1 by LDF, Switzer8 and PSSE based on pure pix-

els only (left) and all pixels (right) of the training areas

G1a, G1d, G2a and G3. The water region is misclassi-

¯ed to developed area. This comes from that a part of the

riverbed is dried up. The method LDF detects spatially-
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Table 3. Extended over-all accuracies of discrimination methods

Training data: pure cells only or all pixels in G1a, G1d, G2a, G3
Test data: pure cells only (sample size = 4433), or all pixels (sample size = 10000) in T1

Discrimination methods

Training areas LDF QDF Switzer8 PSSE

code cells no. of cells T1 pure T1 all T1 pure T1 all T1 pure T1 all T1 pure T1 all

G1a pure 1164 .6506 .4960 .6790 .5053 .7067 .5402 .7192 .5459

G1a all 2500 .6619 .5021 .6803 .5102 .7011 .5373 .7232¤ .5511y
G1d pure 1127 .5615 .4396 .6397 .4963 .6000 .4726 .6519¤ .5007

G1d all 2500 .5964 .4562 .6510 .5039y .6291 .4898 .6375 .4884

G2a pure 4919 .5682 .4486 .7029 .5368 .6172 .4848 .6736 .5236

G2a all 10000 .5766 .4501 .7031¤ .5377y .6165 .4822 .6429 .4969

G3 pure 17623 .6253 .4739 .6966 .5328 .6578 .5041 .6614 .5049

G3 all 40000 .6325 .4772 .6979¤ .5330y .6704 .5093 .6650 .5056

¤ denote the best values for discriminating pure cells in the test area T1 based on respective training data.

y denote the best values for discriminating all cells in the test area T1 based on respective training data.

local changes (over¯tting to the test data), but the

Switzer and PSSE show spatially-stable performances

because they take spatial-continuity of the categories into

account.

C. Unmixing of all pixels in T1

Finally, all pixels in the test area T1 are unmixed

based on pure pixels only, or all pixels in the four training

areas. Table 4 gives accuracy measures (16) of unmixing

procedures: PLDF, PQDF and PSSE, see B and D of Section

III. The posterior probabilities of the training data z¤
¯ are

calculated by (13) and (14).

Table 4. Extended over-all accuracies of unmixing
methods. Training data: pure cells only or all pixels
in G1a, G1d, G2a, G3; Test data: all data in T1

Training areas Unmixing methods

code cells n PLDF PQDF PSSE

G1a pure 1164 .4808 .5194 .5721

G1a all 2500 .4871 .5244 .5803¤

G1d pure 1127 .4644 .5249 .5158

G1d all 2500 .4836 .5337¤ .5205

G2a pure 4919 .4473 .5599 .5495

G2a all 10000 .4512 .5616¤ .5340

G3 pure 17623 .4783 .5431 .5496

G3 all 40000 .4868 .5430 .5500¤

¤ denote the best values for unmixing all cells in T1 based

on respective training data.

It is shown that the use of mixels improves the most

of classi¯cation results signi¯cantly. Further, PQDF and

PSSE are superior to PLDF.

Fig. 5 illustrates that the water region in the test

area T1 is unmixed by PSSE based on pure cells only,

or pure and mixed cells of the training areas G1a and

G1d. Numerals in legends give corresponding accuracy

measures.

The di®erence of accuracies due to G1a and G1d is

around 0.06, however, it may be seen that the ¯gures due

to G1a are far superior to those due to G1d.

VI. Concluding remarks

We have considered the parameter estimation method

based on training data with pure and mixed cells. Next,

the classi¯er based on penalized SSE are reviewed. The

unmixing procedure without penalty term is very close to

the ordinary linear spectral unmixing. The di®erence is

just a weight matrix for evaluating the quadratic term.

Based on the experiments on the actual Landsat data, we

observed the followings:

² For most of discrimination procedures, training data

including mixels improve the discrimination results

based on pure-cells only, especially, in unmixing case.

² The method PSSE de¯ned by minimizing (9) is use-

ful for discrimination as well as unmixing. It gives

spatially-stable classi¯cation results.
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True categories of the test area T1 by the detailed

digital land-use data

LDF: pure pixels (left)(6), and all pixels (right)(5)

Switzer 8: pure pixels (left)(3), and all pixels (right)(4)

PSSE: pure pixels (left)(2), and all pixels (right)(1)

Fig. 4. Discrimination of the test area T1 due to pure pixels

only or all pixels of the training area G1a. Numerals denote

rank of accuracy assessment

Water region of the test area T1 by the detailed digital

land-use data

G1a: pure pixels .5721 (left), all pixels .5803 (right)

G1d: pure pixels .5158 (left), all pixels .5205 (right)

Fig. 5. Unmixing of water region in T1 by PSSE due to

pure pixels only or all pixels of the training areas G1a and

G1d. Numerals denote the extended over-all accuracies
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² In discrimination, PSSE works well when training

data is small, and QDF overcomes PSSE when train-

ing data is large. In unmixing, PSSE shows a better

performance than PLDF and PQDF de¯ned by (13) and

(14) respectively.

Further investigation in the case that categories have in-

dividual variance-covariance matrices is still required.
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