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Let {Xi}, 1 ≤ i ≤ n, be a sequence of Bernoulli variables and

Sn =
n∑
1
Xi.

It is well known that Sn ∼ B(n, p), when

(a) Xi’s are independent, and

(b) Xi’s are identical, i.e., P (Xi = 1) = p for all i.

When Xi’s are independent with P (Xi = 1) = pi, 1 ≤ i ≤ n,

((b) is violated) then Sn is said to follow Poisson-binomial.

The pmf of Poisson - binomial distribution is

P (Sn = k) =
∑

∑
xi=k

n∏
i=1
pxi

i q
1−xi

i 0 ≤ k ≤ n.

( Samuels (1965) ; Wang (1993)).

1. An extension of the Binomial Model
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Note that

P (Sn = x) = P (Xn = 1|Sn−1 = x− 1)P (Sn−1 = x− 1)

+P (Xn = 0|Sn−1 = x)P (Sn−1 = x). (1.1)

Woodbury (1945) considered the case where both P (Xn =

1|Sn−1 = x − 1) and P (Xn = 0|Sn−1 = x) are functions of

x alone.

Rutherford (1954) considered the special case where P (Xn =

1|Sn−1 = x) = a + bx, with certain conditions on a and b,

among others.

Recently, Drezner and Farnum (DF) (1993) considered

P (Xn = 1|Sn−1 = x− 1) = (1− θn)p+ θn
(
x− 1

n− 1

)
,

P (Xn = 0|Sn−1 = x) = (1− θn)(1− p) + θn
(
n− 1− x
n− 1

)
,

where P (X1 = 1) = p; θ1 = 0, θi, 2 ≤ i ≤ n are such that the

above quantities are probabilities.

The probabilities depend both on n and x.

They discussed various practical applications where the above

model fits better than the usual binomial model.

Their analysis of the model involves a tedious algebra and

E(Sn) and V (Sn) (for equal θi’s) requires a number of of lem-

mas.

Questions 1:
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(a) Is there any simple approach?

(b) What are P (Xi = 1) and θi’s ?

A new approach to the the distribution of Sn.

The following results are from Vellaisamy (1996).

Lemma 2.1. Let X1, · · · , Xn be any Bernoulli variables, S0 =

0, and Sk =
k∑
j=1
Xj. Then the distribution of Sk is completely

known iff P (Xk = 1|Sk−1) is known, for 1 ≤ k ≤ n.

One way of studying the distribution of Sk is through condi-

tional distributions of Xj given Sj−1, 1 ≤ j ≤ k.

This approach is much more efficient and also leads to new

probabilistic models for analyzing dependent Bernoulli vari-

ables.

Question 2 :
Does independence of Xk and Sk−1, for 1 ≤ k ≤ n, imply the

independence of X1, . . . , Xn ?

The Answer is ‘No’
A counter example follows:

Example 2.1. Let X1 and X2 be iid Bernoulli variables with

success probability p. Let X3 be such that

P (X3 = 1|X1 = 0;X2 = 0)
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= P (X3 = 1|X1 = 1,X2 = 1) = p;

P (X3 = 1|X1 = 0,X2 = 1) = a; and

P (X3 = 1|X1 = 1;X2 = 0) = 2p− a,

where max{0, (2p−1)} < a < min{1, 2p}, and a �= p.

Facts:

a)P (X3 = 1) = p,

b)P (X3 = 1|S2 = j) = p, for j = 0, 1, 2;

=⇒ X3 and S2 are independent.

But, X1, X2 and X3 are not independent unless a = p.

A Characterization of the B(n, p)

Theorem 1.1. For 1 ≤ k ≤ n,

Sk ∼ B(k, p) iff

P (Xk = 1|Sk−1) = p, for all 1 ≤ k ≤ n.

An important consequence : B(n, p) arises also as
the distribution of sum of dependent (but identical) Bernoulli

variables.

We will return to related questions later.

Passing Remark: Poisson-binomial distribution also arises
from the model

P (Xk = 1|Sk−1) = pk, for all 1 ≤ k ≤ n.
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Note that DF’s (1993) model corresponds to the form

P (Xi = 1|Si−1) = (1− θi)p+
θi

(i− 1)
Si−1. (3.2)

Answer to Question 1 (b):

Lemma 1.2. Let Xk’s, 1 ≤ k ≤ n, be Bernoulli variables as

in (3.2). Then, for 1 ≤ k ≤ n,

(i) E(Sk) = kp.

(ii) P (Xk = 1) = p; hence Xk’s are identical.

(iii) The parameters θk’s are given by

θk = (k − 1)ρkCk,

where ρk = Corr(Sk−1, Xk) and Ck = σ(Xk)/σ(Sk−1).

Result (i) above for the case k = n is Theorem 2 in DF(1993).

Our proof is much simpler.

Theorem 1.2. For Xi’s satisfying (3.2)

V (Sn) =


1 +

n∑
j=2

n−j∏
k=0


1 + 2 θn−k

n− k − 1




 pq. (1.2)

The proof requires only a few steps.

Extension to Non-identical case is also simple.

Note that Theorem 1.2. implies Sk ∼ B(k, p), 1 ≤ k ≤ n, iff

(i) Xi is independent of Si−1 (2 ≤ i ≤ n), and

(ii) Xi’s are identical with P (Xi = 1) = p.
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Questions 3:
(a) Is it possible to relax the condition (ii) above?

(b) Does the B(n, p) arise as the distribution of the sum of

dependent and non-identical Bernoulli variables?

(c) Is there a complete characterization of B(n, p)?

questions are addressed.

2. The Nature of the B(n, p)

The following results are from Vellaisamy and Punnen (1999).

Lemma 2.1 Let X1, . . . , Xn be arbitrary Bernoulli vari-

ables, and Sn =
n∑
1
Xi.

Let Tj =
∑

1≤i1<i2<···<ij≤n
E(Xi1Xi2 . . . Xij). Then

P (Sn = k) =
n∑
j=k
(−1)j−k


j
k


Tj, (2.1)

for k = 0, 1, . . . , n.

The above result, called “sieve formula”, is well known (cf.

Blom, Holst and Sandell (1994, p.30)).

A simple but an interesting characterization of B(n, p) is:

Theorem 2.1 Under the conditions of Lemma 2.1, Sn =

B(n, p) iff Tj =
(
n
j

)
pj, 1 ≤ j ≤ n.

Remark 2.1. This result does not identify all the distribu-
tions of Xi’s, which lead to B(n, p). So B(2, p) and B(3, p) are

analyzed in detail.
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2.1 The case B(2, p)

Let X1 and X2 be any Bernoulli variables. Find all the X1 and

X2 such that S2 = X1 +X2 ∼ B(2, p).

Crucial fact : Joint distribution of (X1, X2) is completely de-

termined by the vector (call it the pmf)

(p1, p2.1, p2.0)

= (P (X1=1), P (X2=1|X1=1), P (X2=1|X1=0)).

By Theorem 2.1, enough to find X1 and X2 such that T1 = 2p

and T2 = p
2, that is, to find (p1, p2.1, p2.0) satisfying

P (S2 = 0) = 1− T1 + T2 = q
2 (2.2)

and P (S2 = 2) = T2 = p
2. (2.3)

Equation (2.3) implies p1p2.1 = p
2.

Fix now p1 so that p2.1 = p
2/p1. Using (2.2), we get

(1− p2.0)(1− p1) = q
2

which yields p2.0 = 1− q2

q1
. The conditions

p2.0 ≥ 0 and p2.1 ≤ 1 lead to p2 ≤ p1 ≤ 1− q2 for p1.

The above analysis can be strengthened as follows:

Lemma 2.2. Let X1 and X2 be any Bernoulli variables, and

P (X1 = 1) = p1.Then S2 ∼ B(2, p) iff

P (X2 = 1|X1 = 1) =
p2

p1
, (2.4)

P (X2 = 1|X1 = 0) = 1− q2

q1
, (2.5)
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where p2 ≤ p1 ≤ 1− q2 and q1 = 1− p1.

Corollary 2.1 Let P (Xi = 1) = p1, i = 1, 2. Then S2 ∼
B(2, p) for some p, iff they are independent.

Remarks 2.1 Let B2(p) denote the set of all distributions

that lead to B(2, p). Then

B2(p) =


(p1,

p2

p1
, 1− q2

q1
)|p2 ≤ p1 ≤ 1− q2


 . (2.6)

The distribution (iid case) (p, p, p) ∈ B2(p).

Example 2.1. Observe that

B2(
1

3
) =


(p1,

1

9p1
, 1− 4

9q1
)

∣∣∣∣∣
1

9
≤ p1 ≤ 5

9


 ,

which is an infinite set. So B(2, 1
3) arises infinitely many ways.

For example, (12,
2
9,

1
9) ∈ B2(

1
3)

A simple mnemonic device : To check if

(p1, p2.1, p2.0) corresponds to B(2, p) :

(a) Find p = (p1p2.1)
1/2, and q = 1− p.

(b) If p2.0 = 1− q2

q1
, then S2 ∼ B(2, p).

Note (19,
1
4,

1
4) �∈ B(2, p), as (b) is violated.

2.2. The case B(3, p)

Same Approach : In addition to p1, p2.1, p2.0,

define p3.ij = P (X3 = 1|X1 = i,X2 = j). The distribution of

(X1, X2, X3) is determined by the vector

(s1, s2, s3, s4, s5, s6, s7) = (p1, p2.1, p2.0, p3.11, p3.10, p3.01, p3.00),
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which we call the distribution of (X1, X2, X3). Then,

B3(p) =


(s1, s2, s3,

p3

s1s2
, s5,

p2(1 + 2q)− s1s2 − s1(1− s2)s5
(1− s1)s3

,

1− q3

(1− s1)(1− s3)


 , where

(a) 0 < p3 < s1s2;

(b) 0 < q3 ≤ (1− s1)(1− s3);
(c) 0 < p2(1 + 2q)− s1(s2 + (1− s2)s5) ≤ (1− s1)s5.

(a)-(c) ensure that s4 , s6 and s7 are probabilities.

Remarks 2.2. (i) A Simple Procedure:

(a) Compute p = (s1s2s4)
1/3, and q = (1− p).

(b) Check if

s6 =
p2(1 + 2q)− s1s2 − s1(1− s2)s5

(1− s1)s3
(2.7)

(c)Check also if

s7 = 1− q3

(1− s1)(1− s3)
. (2.8)

If (2.7) and (2.8) are satisfied, then S3 ∼ B(3, p).

(ii) X1, X2 and X3 are independent, and S3 ∼ B(3, p), implies

B3(p) = {(p, . . . , p)} and hence identical.
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Question 4: Do the identicalness and S3 ∼ B(3, p) imply

the independence?

Answer is NO unlike in the case B(2, p).

Example 2.2. Let (X1, X2, X3) have the distribution

(
1

2
,
1

3
,
2

3
,
3

4
,
1

5
,
4

5
,
1

4
).

then P (X2 = 1) = s1s2 + (1− s1)s3 =
1

2

P (X3 = 1)(1− s1){s3s6+ = p3+p2(1+2q)−s1s2+(1−s1)(1−s3)−q3

=
1

2
(hence identical)

Also, S3 ∼ B(3, 1
2), as (2.7) and (2.8) are satisfied. But X1, X2

and X3 are not independent.

In Example 2.2, Xi’s are identical and S3 ∼ B(3, p1). However,

identicalness is not necessary to have B(3, p) with p = p1.

Example 2.3. Consider the distribution
(
1

3
,
4

9
,
1

3
,
1

4
,
1

3
,
2

9
,
1

3

)

Then S3 ∼ B(3, p) with p = p1. But Xi’s are not identical, as

P (X2 = 1) = 10
27 and P (X3 = 1) = 8

27.

Example 2.4. Let (X1, X2, X3) have distribution

(
1

3
,
1

6
,
1

4
,
9

32
,
3

10
,
5

48
,
5

32
).

Then, S3 ∼ B(3, 1
4) and P (X2 = 1) = 2

9 and
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P (X3 = 1) = 7
36.

This is interesting, asXi’s are neither identical nor independent

and also p �= p1.

3. The General Case

First a result showing the connection between the binomial

distributions and the Poisson process.

The ‘if’ part of the following characterization of Poisson model

is not known.

Lemma 3.1. Let {Xi}i≥1 be a sequence of Bernoulli vari-

ables, and {N(t)}, independent of the Xi’s, be a Poisson pro-
cess with rate λ > 0. Then SN(t) =

N(t)∑
i=1
Xi follows P (λpt) iff

Sn ∼ B(n, p) for every n ≥ 1.

Question 4 : When Sk ∼ B(k, p) for every k ≥ 1 ?

Answer : A slight modification of Theorem 1.1.

Theorem 3.1. (Vellaisamy, 1996) For k ≥ 1, Sk ∼ B(k, p)

iff P (Xk = 1|Sk−1) = p for every k ≥ 1.

Lemma 3.1 and Theorem 3.1 leads to

Corollary 3.1. Under the conditions of Lemma 3.1, SN ∼
P (λp) iff P (Xi = 1|Si−1) = p for every i.

Implication: Poisson distribution could arise as the distri-
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bution of a random sum of dependent Bernoulli variables.

Example 3.1 Consider the distribution

(
1

2
,
2

3
,
2

3
,
3

4
,
4

5
,
1

5
,
1

4
).

Then, Xi’s are identical with P (Xi = 1) = 1
2, and S3 ∼ B(3, 1

2).

But S2 does not follow B(2, p), asXi is not independent of Si−1,

1 ≤ i ≤ 3.

So, when we observe a sequence of Bernoulli variables, distri-

bution then B(n, p) could arise at any stage. of Sn. stage.

Difficult to extend the approach used in earlier sections for

n ≥ 4. For example, one has to deal with a vector of 15 coordi-

nates to denote an arbitrary joint distribution of four Bernoulli

variables. So, we adopt a slightly different method based on the

conditional distribution of Xn given Sn−1. Such models occur

in the analysis of shock models in reliability theory. DF’s(1993)

model is another example. Recently, we have used these models

for modelling dependent production processes. These models

could also be helpful in analyzing environmental data.

Let d(j) = P (Sn−1 = j) and D(j) = P (Sn−1 ≤ j), 0 ≤ j ≤
n− 1. Similarly, let b(j) and B(j) respectively denote the pmf

and cdf of B(n, p).

Theorem 3.2. Let X1, . . . , Xn be any sequence of Bernoulli

variables such that 0 < D(k)−B(k) ≤ d(k) for 1 ≤ k ≤ n− 1.
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Then Sn ∼ B(n, p) iff

P (Xn = 1|Sn−1 = k)d(k) = D(k)−B(k), (3.1)

for every k ∈ {0, 1, . . . , n− 1}.

Remarks 3.1. (i) Let d(k), 0 ≤ k ≤ n− 1, be any distribu-

tion of Sn−1 such that (Dl = 0 for l < 0)

Bk−Dk−1 < dk < Bk+1−Dk−1, 0 ≤ k ≤ n−2, (3.2)

and dn−1 = 1−
n−2∑
i=0
di.

Let P (Xn = 1|Sn−1 = k) = c(k), say, satisfy

c(k)d(k) = D(k)− B(k) = c(k − 1)d(k − 1) + d(k)− b(k)

for 0 ≤ k ≤ n− 2, and c(n − 1)d(n − 1) = b(n). Then by

Theorem 3.2, Sn ∼ B(n, p).

(ii) As an example, let d(0) be any real with

B(0) < d(0) < B(1), and

d(k) = B(k)−D(k − 1) +


n− 1

k + 1


pk+1qn−k−1,

for 0 ≤ k ≤ n− 2. This choice satisfies (3.2).

4. Identical or Independent Summands

Lemma 4.1. LetX1, . . . , Xn be identical Bernoulli variables

with P (X1 = 1) = p1. If Sn ∼ B(n, p), then p = p1.

The proof is trivial. The result holds for exchangeable rv’s also.
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Finally, the case of independent Bernoulli variables with P (Xi =

1) = pi, 1 ≤ i ≤ n

For completeness, we state the following results.

Lemma 4.1. Let X1, X2, . . . , Xn be independent Bernoulli

variables with P (Xi = 1) = pi, 1 ≤ i ≤ n.

Then Sn ∼ B(n, p) iff p1 = p2 = · · · = pn = p.

Theorem 4.1. Let Y1, . . . , Yk be independent binomial ran-

dom variables, Yi ∼ B(ni, pi), and n =
k∑
1
ni. Then Sk =

k∑
1
Yi ∼ B(n, p)

iff p1 = . . . = pk = p.

5. Concluding Remarks

In the study of

Sn =
n∑
1
Xi, it is commonly assumed that Xi’s are indepen-

dent, even though the underlying physical situation may or

may not support it. This very assumption of independence,

to avoid statistical complexity, has led us to a very narrow or

little understanding of the binomial distribution.

As seen earlier, the infinite sets B2(p) and B3(p) reduces to the

singleton set.

Moreover, when n = 3, for example, the set B3(p) is charac-

terized by seven parameters (probabilities) out of which three

have to satisfy certain conditions.

In fact, for a general n, the set Bn(p) is determined by (2
n −
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1)-dimensional vectors of probabilities and only n coordinates

have to satisfy n conditions and the remaining (2n − 1 − n)

coordinates could be arbitrary probabilities.

Hence, for large n, the distribution of Sn is quite likely to follow

or to be close to the binomial distribution.

Finally, by Poisson’s theorem, it is tempting to conclude that

the utility of the Poisson model in a variety of situations deal-

ing with Bernoulli summands (see, Barbour, Holst and Janson

(1992)) is partly due to the nature of the binomial distribution.
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