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Abstract

On the basis of Konishi’s discussion of finding a normalizing transformation
(1981), two types of concrete normalizing transformations are derived. The
proposed normalizing transformations are applied to functions of a sample
covariance matrix. Performance of the transformations in the applications is
numerically compared.

1 Introduction

Normalizing transformations are useful for obtaining simple and accurate approx-

imations to the distributions of statistics. Especially, they are considered to be

effective for the statistic which is very difficult to find a valid asymptotic expan-

sion. The statistic which is composed by discrete random variables and the statistic

which includes nuisance parameters in its formal expansion are the typical examples.

From now on, we consider statistics whose limiting distributions are normal. Kon-

ishi (1981) discussed a general method to find a normalizing transformation when

we have already obtained the asymptotic expansion for the transformed statistic. In

Konishi (1981), it was shown that we find a normalizing transformation as a solution

of a differential equation. Konishi (1991) also derived the differential equation for

making a normalizing transformation under certain assumptions of moments. In this

article, we propose two types of concrete normalizing transformations. One transfor-

mation is represented as a power function. Another transformation is represented as

a exponential function. In Section 2, the normalizing transformations are proposed.

In Section 3, they are applied to functions of a sample covariance matrix. In Section

4, performance of the transformations in the application is numerically compared.



2 Normalizing transformations of a random vari-

able under certain assumptions of moments

Let Tn be a random variable whose distribution depends on the parameter n. We

assume that the mean, variance, and third moment about the mean are evaluated as

E(Tn) = µ+
1

n
µ1 + o

(
1

n

)
, (2.1)

V (Tn) =
1

n
σ2 + o

(
1

n

)
, (2.2)

and

E[{Tn − E(Tn)}3] =
1

n2ν + o
(
1

n2

)
, (2.3)

respectively, where σ �= 0 and ν �= 0. We also assume that the distribution function

of √
n(Tn − µ)

σ

tends to a standard normal distribution function as n → ∞. Let f(x) be a strictly

monotone and twice continuously differentiable function in a neighbourhood of x = µ.

If we define

g(x) =

√
n

f ′(µ)σ

{
f(x)− f(µ)− 1

n

(
f ′(µ)µ1 +

1

2
f ′′(µ)σ2

)}
, (2.4)

g(x) is also a strictly monotone and twice continuously differentiable function in a

neighbourhood of x = µ. If we denote the cumulant-generating function of g(Tn) by

ψg(Tn)(t), it is evaluated as

ψg(Tn)(t) =
(it)2

2
+

1√
n

(it)3

6σ3

(
ν + 3

f ′′(µ)
f ′(µ)

σ4

)
+ o

(
1√
n

)
. (2.5)

We consider a case that Tn is a continuous random variable which satisfies certain

regularity conditions. By applying the inversion formula to (2.5), F (x) = P (g(Tn) <

x) is evaluated as

F (x) = Φ(x)− 1√
n

1

6σ3

(
ν + 3

f ′′(µ)
f ′(µ)

σ4

)
(x2 − 1)φ(x) + o

(
1√
n

)
,

where Φ(·) and φ(·) are the standard normal distribution function and its first deriva-
tive, respectively. Therefore, if f satisfies the condition

ν + 3
f ′′(µ)
f ′(µ)

σ4 = 0, (2.6)



g is a normalizing transformation in the sense that

F (x) = Φ(x) + o

(
1√
n

)
. (2.7)

On the other hand, we consider a case that Tn is a discrete random variable. If

f satisfies the condition (2.6), g is a normalizing transformation in the sense that

g(Tn)
L−→ N(0, 1), as n → ∞

and

E[{g(Tn)− E(g(Tn))}3] = o

(
1√
n

)
. (2.8)

The condition (2.6) which is necessary to obtain a normalizing transformation under

assumptions (2.1), (2.2), and (2.3) was derived in Konishi (1991).

In this paper, we derive concrete functions which satisfy the condition (2.6).

When µ �= 0, we consider the function

f1(x) =




µ
η

{(
x
µ

)η − 1
}

(η �= 0)

µ log xµ (η = 0).
(2.9)

For any η, let the domain of f1 be (0,∞) in the case of µ > 0, while let the domain

of f1 be (−∞, 0) in the case of µ < 0. On the other hand, for η > 0 we may adopt

[0,∞) or (−∞, 0] as domain. Here, if we put

η = − µν

3σ4 + 1, (2.10)

then f1 is not only strictly monotone and twice continuously differentiable in a neigh-

bourhood of x = µ, but it also satisfies the condition (2.6). Therefore, if we apply

f1 to (2.4), then

g1(Tn) =




√
n
σ

[
µ
η

{(
Tn
µ

)η

− 1
}
− 1
n

(
µ1 +

1
2
σ2ξ

)]
(η �= 0)√

n
σ

[
µ log Tn

µ − 1
n

(
µ1 +

1
2
σ2ξ

)]
(η = 0),

where

ξ = − ν

3σ4 , (2.11)

is a normalizing transformation of Tn which satisfies (2.7) or (2.8). In the case of

µ �= 0, a concrete normalizing transformation of Tn is derived by g1.

Next, we derive another transformation. When σ �= 0 and ν �= 0, we consider the

function



f2(x) =
1

ξ
eξ(x−µ) − 1

ξ
, (2.12)

where ξ is given by (2.11). Then, f2 is not only an infinitely differentiable and strictly

monotone function in domain(−∞,∞), but it also satisfies the condition (2.6). If

we apply f2 to (2.4), then

g2(Tn) =

√
n

σ

{
1

ξ

(
eξ(Tn−µ) − 1

)
− 1

n

(
µ1 +

1

2
σ2ξ

)}

is a normalizing transformation of Tn which satisfies (2.7) or (2.8). Even when µ = 0,

we can apply g2 directly.

3 Examples

3.1 Functions of a sample covariance matrix

Let S = (sij) be the sample (unbiased) covariance matrix based on a random sample

of size N = n + 1 drawn from Np(µ,Σ), where Σ is a positive definite matrix. Let

h be a real valued function which satisfies the following conditions (a) and (b).

(a) All the derivatives of h(S) of order 3 and less are continuous in a neighbourhood

of S = Σ.

(b) There exists at least one pair of (i, j) such that ∂h(S)/∂sij |S=Σ �= 0.

Here, we consider the statistic

Tn = h(S).

A stochastic approximation to Tn up to the order n−3/2 is

T ′
n = h(Σ) + n− 1

2 tr(AU) + n−1q1(U) + n− 3
2 q2(U),

where

U = (uij) =
√
n(S −Σ),

A =

{
1

2
(1 + δij)

∂h(S)

∂sij

∣∣∣∣∣
S=Σ

}
,

q1(U) =
1

2

∑
i≥j

∑
k≥l

uijukl
∂2h(S)

∂sij∂skl

∣∣∣∣∣
S=Σ

,

and

q2(U) =
1

6

∑
i≥j

∑
k≥l

∑
m≥r

uijuklumr
∂3h(S)

∂sij∂skl∂smr

∣∣∣∣∣
S=Σ

.

Then, the mean, variance, and third moment about the mean of T ′
n are evaluated as

E(T ′
n) = µ+

1

n
µ1 + o

(
1

n

)
,



V (T ′
n) =

1

n
σ2 + o

(
1

n

)
,

and

E[{T ′
n − E(T ′

n)}3] =
1

n2
ν + o

(
1

n2

)
,

where

µ = h(Σ),

µ1 =
1

2

∑
i≥j

∑
k≥l

(σikσjl + σilσjk)
∂2h(S)

∂sij∂skl

∣∣∣∣∣
S=Σ,

σ2 = 2tr(AΣ)2,

ν = 8tr(AΣ)3 + 12
∑
i≥j

∑
k≥l

[ΣAΣ]ij [ΣAΣ]kl
∂2h(S)

∂sij∂skl

∣∣∣∣∣
S=Σ,

and [A]ijdenotes the (i, j) element of a matrix A (Siotani et al., 1985, pp.161–162).

Furthermore,

√
n

(
T ′

n − µ

σ

)
L−→ N(0, 1), as n → ∞.

Then g1(T
′
n) and g2(T

′
n) are normalizing transformations of T

′
n in the sense of (2.7).

3.1.1 The i-th largest characteristic root of a sample covariance matrix

The example given by Section 3.1 has many applications. As an application of the

function of a sample covariance matrix, we pick up the i-th largest characteristic root

of a sample covariance matrix. Let κin(i = 1, . . . , p) be the i-th largest characteristic

root of the sample covariance matrix S based on a sample of size N = n + 1 from

a p-variate normal distribution with the population covariance matrix Σ, and let

λ1 ≥ . . . ≥ λi−1 > λi > λi+1 ≥ . . . ≥ λp be the ordered characteristic roots of Σ. If

we put Tin = κin(i = 1, . . . , p), under the assumption of simplicity, then the mean,

variance, and the third moment about the mean of Tin(i = 1, . . . , p) are evaluated as

E(Tin) = µ + n−1µ1 + o(n−1), V (Tin) = n−1σ2 + o(n−1), and E[{Tin − E(Tin)}3] =

n−2ν + o(n−2), where µ = λi,

µ1 =
p∑

k �=i

λikλiλk,

σ2 = 2λ2
i , ν = 8λ3

i , and λjk = (λj − λk)
−1. Furthermore, under the assumption of

simplicity,

√
n
(
Tin − µ

σ

)
L−→ N(0, 1) (i = 1, . . . , p), as n → ∞.

Therefore,
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and

g2(Tin) =

√
n

2


−3

2

{
e
− 2

3

(
Tin
λi

−1

)
− 1

}
− 1

n


 p∑

k �=i

λikλk − 2

3






are normalizing transformations of Tin in the sense of (2.7). In this case, g1(Tin)

coincides with the transformation given by Konishi (1981, p.649).

4 Numerical comparisons

We consider the distribution of the i-th largest characteristic root of a sample covari-

ance matrix. Simulated distributions of the normal approximation (N), the approx-

imation based on g1(g1), and the approximation based on g2(g2) of n = 30, 50, 100

are constructed by using n×106 trivariate normal random numbers with population

covariance matrix Σ = {σij = 1(i �= j), σij = ρ(i = j) : 1 ≤ i, j ≤ 3}. Let lα/2 and

l1−α/2 be the 100(α/2) and the 100(1−α/2) upper percentiles of the simulated distri-

bution, respectively. Also, let zα/2 and z1−α/2 be the 100(α/2) and the 100(1−α/2)

upper percentiles of the standard normal distribution, respectively. We investigate

the performance of the approximations based on the index

Q = |z1−α/2 − l1−α/2|+ |zα/2 − lα/2|.

The values of Q×105 for ρ = 3.0, 5.0, 10.0 when α = 0.05 are listed in Table 1. From

Table 1 and the other numerical comparisons, we find that the approximation based

on g1 performs better than the approximation based on g2 in this example.

5 Concluding Remarks

We proposed two types of concrete normalizing transformations g1 and g2. Transfor-

mation g1 is represented as a power function, while g2 is represented as a exponential

function. Our numerical comparisons show that g1 performs better than g2 in the

example of i-th largest characteristic root of a sample covariance matrix.



Table 1: Values of (Q× 105) when α = 0.05

ρ n N g1 g2

30 4718 1452 2023

3.0 50 3705 768 1125

100 2651 315 505

30 6043 2720 3177

5.0 50 5098 2090 2395

100 3845 1033 1204

30 9660 3729 4096

10.0 50 7774 3368 3631

100 6038 2726 2874
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