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Abstract

On the basis of Konishi’s discussion of finding a normalizing transformation
(1981), two types of concrete normalizing transformations are derived. The
proposed normalizing transformations are applied to functions of a sample
covariance matrix. Performance of the transformations in the applications is

numerically compared.

1 Introduction

Normalizing transformations are useful for obtaining simple and accurate approx-
imations to the distributions of statistics. Especially, they are considered to be
effective for the statistic which is very difficult to find a valid asymptotic expan-
sion. The statistic which is composed by discrete random variables and the statistic
which includes nuisance parameters in its formal expansion are the typical examples.
From now on, we consider statistics whose limiting distributions are normal. Kon-
ishi (1981) discussed a general method to find a normalizing transformation when
we have already obtained the asymptotic expansion for the transformed statistic. In
Konishi (1981), it was shown that we find a normalizing transformation as a solution
of a differential equation. Konishi (1991) also derived the differential equation for
making a normalizing transformation under certain assumptions of moments. In this
article, we propose two types of concrete normalizing transformations. One transfor-
mation is represented as a power function. Another transformation is represented as
a exponential function. In Section 2, the normalizing transformations are proposed.
In Section 3, they are applied to functions of a sample covariance matrix. In Section

4, performance of the transformations in the application is numerically compared.



2 Normalizing transformations of a random vari-

able under certain assumptions of moments

Let T, be a random variable whose distribution depends on the parameter n. We

assume that the mean, variance, and third moment about the mean are evaluated as

E(T,) =p+ %ul +o0 (%) , (2.1)
V(T,) = %02 +o <%) | (2.2)

and
E[{T, — E(T,)}"] = %y +o (%) , (2.3)

respectively, where o # 0 and v # 0. We also assume that the distribution function

of
Vi(Tn — )
o
tends to a standard normal distribution function as n — oco. Let f(z) be a strictly

monotone and twice continuously differentiable function in a neighbourhood of x = p.
If we define

o) = o {1 = 10 = & (Pl 5wt} 2a)

g(x) is also a strictly monotone and twice continuously differentiable function in a
neighbourhood of x = u. If we denote the cumulant-generating function of ¢(7,,) by

g1, (t), it is evaluated as

Vg1 (8) = (?2 + % (é?j <u - 3?:((5)) a4> +o0 <%> : (2.5)

We consider a case that T, is a continuous random variable which satisfies certain

regularity conditions. By applying the inversion formula to (2.5), F'(z) = P(g(T,) <

x) is evaluated as

F(z) = ®(z) — %% <1/ + 3?&‘; a4> (2% = 1)(z) + 0 (%) :

where ©(-) and ¢(-) are the standard normal distribution function and its first deriva-

tive, respectively. Therefore, if f satisfies the condition

f”(,u) 4

v+3 7l o =0, (2.6)




g is a normalizing transformation in the sense that

F(z) = ®(a) + 0 (%) | (2.7)

On the other hand, we consider a case that T}, is a discrete random variable. If

f satisfies the condition (2.6), g is a normalizing transformation in the sense that
9(T,) =5 N(0,1), as n — oo

and

Bl{g(T,) — E(g(T.)}) = o (%) | (2.8

The condition (2.6) which is necessary to obtain a normalizing transformation under
assumptions (2.1), (2.2), and (2.3) was derived in Konishi (1991).

In this paper, we derive concrete functions which satisfy the condition (2.6).
When p # 0, we consider the function

Bz _

- n {<N) 1} (77 & 0) 29

fi(x) T (2.9)
pulog & (n=10).

For any 7, let the domain of f; be (0,00) in the case of u > 0, while let the domain

of fi be (—00,0) in the case of 1 < 0. On the other hand, for n > 0 we may adopt

[0,00) or (—o0,0] as domain. Here, if we put

%
=——+1 2.10
n 354 + 1, ( )

then f; is not only strictly monotone and twice continuously differentiable in a neigh-
bourhood of x = pu, but it also satisfies the condition (2.6). Therefore, if we apply
f1 to (2.4), then

[% {(%)n — 1} — L (i + %025)] (n #0)

o

gl(Tn> =
T,
1t [ulogﬁ—%(mﬂL%U%)} (n=0),
where
=2 (2.11)
30t '

is a normalizing transformation of 7, which satisfies (2.7) or (2.8). In the case of
1 # 0, a concrete normalizing transformation of T, is derived by g¢;.
Next, we derive another transformation. When o # 0 and v # 0, we consider the

function



fg(:z:) — %es(wu) _ %’

where ¢ is given by (2.11). Then, f; is not only an infinitely differentiable and strictly

(2.12)

monotone function in domain(—o0, 00), but it also satisfies the condition (2.6). If
we apply fs to (2.4), then

1) = {0 =) = (3

is a normalizing transformation of 7, which satisfies (2.7) or (2.8). Even when p = 0,

we can apply g directly.

3 Examples

3.1 Functions of a sample covariance matrix

Let S = (s;;) be the sample (unbiased) covariance matrix based on a random sample
of size N = n + 1 drawn from N,(p,X), where X is a positive definite matrix. Let
h be a real valued function which satisfies the following conditions (a) and (b).

(a) All the derivatives of h(S) of order 3 and less are continuous in a neighbourhood
of S=3.

(b) There exists at least one pair of (i, j) such that Oh(S)/0si;|g_s # 0.

Here, we consider the statistic

T, = h(S).
A stochastic approximation to T}, up to the order n=3/2 is

T = h(E) + n 3 tr(AU) + n~'q(U) + n~ 3 g (U),

where
U = (uy) = v/n(§ = 2),
A={2(1+3y) ons) ’
2 Jsij |§_%
62h(S)
)
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Then, the mean, variance, and third moment about the mean of 7 are evaluated as

1 1
E(T,) =p+—m +0(—>7
n n



n
and .
BUT, — B(T)Y) = v +o (=),
where
= h(%),
1 9?h(S)
1= = (CikOji + 00 jk) =———
2 ; kzzzl J J 8s,~jaskl 5:27
o = 2tr(AX)?,
9?h(8S)
v =8tr(AX)? + 12 [ZAX;[ZAX],
;kzzz:l J aSZ‘jaSkl 5:27

and [A];;denotes the (7, j) element of a matrix A (Siotani et al., 1985, pp.161-162).

Furthermore,

T, —n

a

Then ¢,(T)) and ¢»(7) are normalizing transformations of 7} in the sense of (2.7).

) L, N(0,1), as n — oo.

3.1.1 The i-th largest characteristic root of a sample covariance matrix

The example given by Section 3.1 has many applications. As an application of the
function of a sample covariance matrix, we pick up the ¢-th largest characteristic root
of a sample covariance matrix. Let k;,(i = 1,...,p) be the i-th largest characteristic
root of the sample covariance matrix S based on a sample of size N = n + 1 from
a p-variate normal distribution with the population covariance matrix X, and let
At > o> Mo > A > Aipr > ... > A, be the ordered characteristic roots of X. If
we put Tj, = Kin(t = 1,...,p), under the assumption of simplicity, then the mean,
variance, and the third moment about the mean of T, (i = 1,...,p) are evaluated as
E(Tyn) = p+n" +o(n™), V(Tin) = n~'o? +o(n™), and E{T;, — E(Tin)}?] =

n~2v + o(n~?), where p = \;,

p
= XikAidg,
ki

02 = 2X\}, v = 8)\}

(2 7

simplicity,

and Ajr = (A\; — \p)~!. Furthermore, under the assumption of

Tin — .
\/ﬁ( M)#N(O,l) (t=1,...,p), as n — o0.

g

Therefore,



= E () 15 (B3
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and

are normalizing transformations of T}, in the sense of (2.7). In this case, g1(7Ti,)
coincides with the transformation given by Konishi (1981, p.649).

4 Numerical comparisons

We consider the distribution of the i-th largest characteristic root of a sample covari-
ance matrix. Simulated distributions of the normal approximation (N), the approx-
imation based on ¢1(g1), and the approximation based on gs(gs) of n = 30,50, 100
are constructed by using n x 10° trivariate normal random numbers with population
covariance matrix X = {o;; = 1(i # j), o0y =p(i=j):1<1i,j <3}. Let l4/2 and
l1—a /2 be the 100(a/2) and the 100(1 —a/2) upper percentiles of the simulated distri-
bution, respectively. Also, let z,/2 and 2z1_q/2 be the 100(c/2) and the 100(1 — ar/2)
upper percentiles of the standard normal distribution, respectively. We investigate

the performance of the approximations based on the index

Q = |21—ay2 — licasa] + |2ay2 — laj2l-

The values of @ x 10° for p = 3.0, 5.0, 10.0 when o = 0.05 are listed in Table 1. From
Table 1 and the other numerical comparisons, we find that the approximation based

on g; performs better than the approximation based on g in this example.

5 Concluding Remarks

We proposed two types of concrete normalizing transformations g; and go. Transfor-
mation g is represented as a power function, while g, is represented as a exponential
function. Our numerical comparisons show that g; performs better than g, in the

example of ¢-th largest characteristic root of a sample covariance matrix.



Table 1: Values of (Q x 10°) when o = 0.05

p | n N 91 9o
30 || 4718 | 1452 | 2023
3.0 | 50 || 3705 | 768 | 1125
100 || 2651 | 315 | 505
30 || 6043 | 2720 | 3177
5.0 | 50 || 5098 | 2090 | 2395
100 || 3845 | 1033 | 1204
30 || 9660 | 3729 | 4096
10.0 | 50 || 7774 | 3368 | 3631
100 || 6038 | 2726 | 2874
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