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Abstract – Consider contextual data fusion of multispectral data with different spatial resolutions. We introduce a
new method for data fusion based on Markov random fields so as to take contextual information into account. The
data of low resolution are corrected by the predictor merged with the contextual clustering result of high-resolution
images using Gaussian Markov random fields.

1. Introduction

Data fusion with multispectral images with multiresolutions is an important and basic technology in satellite image
analysis. The technology is widely required because many satellites are equipped with sensors of different resolutions.
We consider a problem to correct `-dimensional low-resolution images by h-dimensional high-resolution images. Note
that both the images may be multivariate.

As an example of such situations, we suppose that multispectral low-resolution data and panchromatic high-
resolution data are given, i.e., ` ≥ 3 and h = 1. For instance, the spatial resolution of visible lights of the satellite
IKONOS is of 4m, whereas that of the panchromatic sensor is of 1m. In this case, ` = 3 and h = 1. Also, the
resolutions of SPOT are respectively 20m and 10m (` = 3, h = 1), and those of LANDSAT 7 are 30m and 15m (` = 6,
h = 1).
The commonly-used method for the enhancement of colored images is the Hue-Saturation-Value (HSV) transform

[1]. The spectral data corresponding to Red, Green and Blue (RGB) at the lower spatial resolution are converted
to HSV, after which the values are replaced by the panchromatic values of the higher resolution. Then, the result is
transformed back to RGB, and an enhanced colored image is obtained. However, the HSV method reduces spectral
information, and is valid only when the number of images is three. Linear methods based on wavelet transform are
also proposed, see e.g., [2]. Many references can be found therein. These methods may keep local information and
preserve the spectral information better than the HSV method. Another method for image correction based on non-
contextual clustering is proposed by [3]. This method may be powerful, but needs much computation and overfits to
the data. A Bayes method is found in a review paper [4]. A fully-statistical approach is also proposed by multivariate
normal distributions [5]. They derived a predictor based on the conditional expectation given the high-resolution
data. However, this method also overfits to the data. A common drawback of these methods in the above is that
spatial information, which is important for remote sensing data, is ignored. To take spatial information of images into
account, another statistical approach so-called cokriging is proposed by [6].
In this paper, we propose a new method taking contextual information into account. Markov random fields (MRF)

provide a theoretically robust and mathematically tractable way of characterizing contextual information, and are
widely used in image segmentation and restoration. See, e.g., Chapter 13 of [7] and references therein for MRF. First,
we classify all pixels of high-resolution images into some clusters by Gaussian MRF (GMRF). Then, the value/vector
of low resolution is corrected by a predictor based on the information of clusters. Here, we derive predictors based on
the conditional expectation given the high-resolution data in the similar way to [5].
In Section 2, we introduce notations and distributional assumptions on spectrum data. Section 3 derives predictors

for low resolution based on the conditional distribution. A MRF for contextual clustering is introduced in Section 4.
Contextual prediction procedure based on the ICM (iterated conditional modes) algorithm due to [8] is presented in



Fig. 1. Four-adjacent-pixels window (W4) and all-square-pixels window (W8)

of the center pixel 0.

Fig. 2. All-square-pixels window (W(16)).

Section 5. The proposed procedure is examined through the actual LANDSAT data, and compared with the standard
methods in Section 6. Conclusions are given in Section 7.

2. Distributional assumptions on spectrum data

Fig. 1 illustrates two neighborhood of the center pixel 0 consisting of four or eight pixels. The four-adjacent-pixels
window and the all-square-pixels window will be referred as W4 and W8 respectively.

We suppose that observations of spectrums with high resolution are available at all pixels, whereas observations
of low-resolution spectrums are not available at all pixels. They may be only observed at each window. Our aim is to
correct such low-resolution data by the high-resolution data observed at the neighborhood W4 or W8.

Let

Zi =

µ
Hi

Li

¶
: (h+ `)× 1, i = 0, 1, . . . , 8, (1)

be a random vector corresponding to spectrum data at the ith pixel, where Hi represents an h × 1 random vector
of high resolution, and Li represents an ` × 1 random vector of low resolution. Suppose that observations on Hi of
high resolution, say hi, are available for i = 0, 1, . . . , 8, whereas each Li of low resolution is not observed. We regard
the average vector

P4
j=0Lj/5 ≡ L5 or

P8
j=0Lj/9 ≡ L9 is only observed at the window W4 or W8. We also assume

that each pixel in the window W4 or W8 belongs to one of g possible clusters denoted by C1, . . . , Cg. A label of the
cluster at the pixel i is denoted by yi. Each yi is supposed to be a realization of a discrete random variable Yi. The
distribution of the cluster label Yi is discussed in section 4. In sections 2 and 3, we assume that yi are known.

Suppose that the conditional distribution of (H 0
i ,L

0
i)
0 given Yi = yi is an (h+ `)-variate normal distribution with

mean vector (µ(yi)
0,ν(yi)

0)0 and common variance-covariance matrix
µ
Σhh Σh`
Σ`h Σ``

¶
. This distribution is denoted by

µ
Hi
Li

¶ ¯̄̄
yi ∼ Nh+`

µµ
µ(yi)
ν(yi)

¶
,

µ
Σhh Σh`
Σ`h Σ``

¶¶
for i = 0, 1 . . . , 8. (2)

Further, we assume that they are independent.

3. Prediction for low resolution based on the conditional expectation

A linear predictor for low resolution is proposed by employing multivariate normal distributions for spectrum data
[5]. They derived a predictor based on the conditional expectation given the high-resolution data. By the similar way
to their method, we shall derive predictors for low resolution in the windows W4 and W8. We note that our predictors
are different from that of [5] in that mean vectors on respective clusters are incorporated.

A. Prediction in four-adjacent-pixels window

Consider the window W4 of Fig. 1 consisting of four pixels. Under the conditional normal assumption
(2) and the conditional independence of (H 0

i ,L
0
i)
0|yi for i = 0, 1 . . . , 4, the joint distribution of the vector Z ≡



(H 0
0,L

0
0, . . . ,H

0
4,L

0
4)
0 : (5h+ 5`)× 1 given y5 is the multivariate normal distribution with mean vector µ and covari-

ance matrix Σ, where

y5 =


y0

y1
...
y4

 , µ =

µ(y0)
ν(y0)
...

µ(y4)
ν(y4)

 and Σ =
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Σ`h Σ`` · · · O O
...

...
. . .

...
...

O O · · · Σhh Σh`
O O · · · Σ`h Σ``

. (3)

See, e.g., [9] for the definition and properties of multivariate normal distributions.
We shall derive the joint distribution of L0 and all random vectors whose observations are available. The random

vector (H 0
0,H

0
1, . . . ,H

0
4, 5L

0
5,L

0
0)
0 : (5h+ 2`)×1 is expressed by a linear mapping AZ with a matrix A defined by

A =
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...

...
...

...
...

...
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: (5h+ 2`)× (5h+ 5`). (4)

The formulas (3) and (4) show that the random vector AZ given y5 follows the multivariate normal distribution with
mean vector Aµ and covariance matrix AΣA0, i.e.,

H0
...
H4

5L5

L0
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...
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, (5)

where ν5 =
P4

j=0 ν(yj)/5. Using the joint distribution (5), we can derive the conditional distribution of L0 as follows.

The covariance matrix AΣA0 appearing in (5) is partitioned as AΣA0 =
µ
Ξ11 Ξ12
Ξ21 Σ``

¶
of size Ξ11 : (5h + `)× (5h + `)

and Ξ12 : (5h+ `)× `. After some algebra we have

Ξ21Ξ
−1
11 =

1

5
(4Σ`hΣ

−1
hh ,−Σ`hΣ

−1
hh , . . . ,−Σ`hΣ

−1
hh , I`), (6)

Σ`` − Ξ21Ξ
−1
11 Ξ12 = 4Σ``·h/5, (7)

where Σ``·h denotes a conditional variance defined by Σ``·h = Σ`` − Σ`hΣ
−1
hhΣh`. From the joint distribution (5) and

the relations (6) and (7), the conditional distribution of L0 is derived as

L0

¯̄{h0,h1, . . . ,h4, `5,y5 }
∼ N`

¡
`5 + Σ`hΣ

−1
hh (h0 − h5) + {ν(y0)− Σ`hΣ

−1
hhµ(y0)}− (ν5 − Σ`hΣ

−1
hhµ5), 4Σ``·h/5

¢
, (8)

where h5 =
P4

j=0 hj/5, µ5 =
P4

j=0 µ(yj)/5.
We propose a predictor for L0 of low resolution based on the conditional distribution (8) by

bLA = `5 + Σ`hΣ
−1
hh (h0 − h5) + {ν(y0)− Σ`hΣ

−1
hhµ(y0)}− (ν5 − Σ`hΣ

−1
hhµ5). (9)

The term {ν(y0)−Σ`hΣ
−1
hhµ(y0)}− (ν5−Σ`hΣ

−1
hhµ5) denotes a difference between two conditional expectations. The

predictor omitting the term is similar to that of [5]. We note that there is no concept of the cluster in their method.

B. Prediction in all-square-pixels window I

Next, we consider spectral data observed in the window W8, see the right hand side of Fig. 1. By the similar
discussion in the preceding subsection A, the predictor at the center pixel is given by

bLB = `9 + Σ`hΣ
−1
hh (h0 − h9) + {ν(y0)− Σ`hΣ

−1
hhµ(y0)}− (ν9 − Σ`hΣ

−1
hhµ9), (10)



where h9 =
P8

j=0 hj/9, µ9 =
P8

j=0 µ(yj)/9, ν9 =
P8

j=0 ν(yj)/9.

C. Prediction in all-square-pixels window II

In this subsection, we reconsider the local window used in [5], which consists of m pixels. Each pixel is numbered
from i = 1 to m. In the sequel, the local window will be referred as W(m). Fig. 2 shows the local window in the case
of m = 16, i.e., W(16).

It is assumed that each Hi of high resolution is observed for i = 1, 2, . . . ,m. Concerning Li of low resolution,
however, only averaged values

Pm
j=1Lj/m ≡ Lm are observed in the window W(m). Observations of Hi and Lm

are respectively denoted by hi and `m. Under these assumptions, we derive the predictor for Li of low resolution by
incorporating mean vectors on respective clusters as follows:

bLC = `m + Σ`hΣ
−1
hh (hi − hm) + {ν(yi)− Σ`hΣ

−1
hhµ(yi)}− (νm − Σ`hΣ

−1
hhµm), (11)

where hm =
Pm

j=1 hj/m, µm =
Pm

j=1 µ(yj)/m, νm =
Pm

j=1 ν(yj)/m.

4. Spatial configuration due to Markov random field

In this section, we consider a model due to MRF for contextual clustering. We suppose that there is a two-
dimensional scene S consisting of n pixels. All pixels in S are numbered from i = 1 to n. A feature vector of high
resolution at pixel i and its observation are respectively denoted by Hi : h× 1 and hi : h× 1. It is assumed that each
pixel belongs to one of g possible clusters denoted by C1, . . . , Cg. A label of the cluster covering the pixel i is denoted
by Yi. This implies that Yi is a discrete random variable taking cluster labels from 1 to g. Put

H ≡
H1

...
Hn

 : hn× 1, Y ≡
 Y1
...
Yn

 : n× 1 and Y(i) ≡ Y with deleted Yi : (n− 1)× 1. (12)

We assume that the conditional distribution of Hi given Yi = yi is an h-variate normal distribution with mean
vector µ(yi) and common variance-covariance matrix Σhh, written as Hi|yi ∼ Nh(µ(yi),Σhh). We also assume that
Hi|yi for i = 1, . . . , n are independent. Hence, the conditional density of H|y with y ≡ (y1, . . . , yn)

0 is given by

f(h|y) =
nY

i=1

f(hi|yi) ≡
nY

i=1

|2πΣhh|−1/2 exp
h
− ©hi − µ(yi)

ª0
Σ−1

hh

©
hi − µ(yi)

ª
/2
i
. (13)

Further, we assume that the cluster-indicator vector Y follows a locally-dependent MRF, i.e., the conditional
probability of Yi given all labels except yi is given by

Pr
n
Yi = k | y(i)

o
=

exp

−β X
j∈Ur(i)

∆(k, yj)


gX

k∗=1

exp

−β X
j∈Ur(i)

∆(k∗, yj)


for β, r ≥ 0, (14)

where ∆(k, k∗) = {µ(k)− µ(k∗)}0Σ−1
hh {µ(k)− µ(k∗)} for k, k∗ = 1, . . . , g denote the squared Mahalanobis distance,

Ur(i) indicates a neighborhood of the pixel i forming a disc centered at i with radius r, and y(i) : (n− 1)× 1 denotes
a realization of Y(i), see (12). Fig. 3 illustrates the neighborhood U1(i) with radius r = 1. The parameter β is a
measure of spatial dependency of the MRF.

5. Contextual prediction based on the ICM algorithm

In the framework of the previous section, the problem is to estimate the cluster-indicator vector Y of the scene S
by using the observed feature data h of high resolution. The estimation of Y can be performed by taking bY which
maximizes the posterior probability

Pr{Y = y | h} . (15)



That is, bY is taken to be the mode of the posterior distribution of Y . It is therefore referred to as the maximum
a posteriori (MAP) estimate. The maximization of (15) with respect to y is clearly formidable because there are gn

possible values of y. Simulated annealing due to [10] can be used to approximate the MAP estimate. However, this
algorithm needs much computation. In this paper, we use the ICM algorithm by [8] instead.

The ICM algorithm is based on the maximization of Pr{Yi = yi | h, y(i)} with respect to yi. If we remove all
terms that are independent of yi, it follows from Bayes’ theorem that

Pr
n
Yi = yi | h, y(i)

o
∝ f(hi|yi) Pr

n
Yi = yi | y(i)

o
. (16)

Under the assumptions (13) and (14), maximizing (16) is equivalent to minimizing©
hi − µ(yi)

ª0
Σ−1

hh

©
hi − µ(yi)

ª
+ 2β

X
j∈Ur(i)

∆(yi, yj). (17)

An estimate byi is obtained based on the target function (17) iteratively. First, an initial estimate y
(0) of y is

obtained, for example, by using a non-contextual rule. In our case, the K-means clustering algorithm is used for
an initial segmentation of the given scene S. See, e.g., [11] for K-means method. Let y(t) be the estimate of y
after completion of the t-th cycle of the ICM algorithm. The (t + 1)-st cycle of the ICM algorithm for the iterative
computation of the estimate of y and the prediction for low resolution is performed in the following steps.

1. Expectation-step: The mean vectors µ(t)(k) and ν(t)(k) for k = 1, . . . , g and the common covariance matrixÃ
Σ

(t)
hh Σ

(t)
h`

Σ
(t)
`h Σ

(t)
``

!
are estimated by using the current estimate y(t), the high-resolution data h and the low-resolution

data `.

2. Maximization-step: At pixel i, by(t+1)
i is chosen to minimize (17) with µ(t)(yi) and Σ

(t)
hh for given β and r. After

application of the process to each pixel in turn, the current estimate y(t) of y is updated to y(t+1).

3. Prediction-step: The low-resolution values `i at each pixel are corrected consecutively by the predictor (9) or
(10) or (11) in the moving window W4 or W8 or W(m).

The algorithm is repeated for a prespecified number of cycles, or until convergence of the corrected images.
We now consider the selection of optimal parameters β and radius r in the locally dependent MRF. In our

spatially-dependent case, we calculate the posterior probability at pixel i defined by

pi(k;β, r) ≡ Pr
n
Yi = k | h, y(i)

o
=

f(hi|k) Pr
n
Yi = k | y(i)

o
gX

k∗=1

f(hi|k∗) Pr
n
Yi = k

∗ | y(i)

o for k = 1, . . . , g. (18)

The parameters β and r are optimized by using the posterior probability (18) in the following steps.

1. Take various values for β > 0 and radius r > 0.

• We estimate the cluster-indicator vector which maximizes the joint density asby(β, r) ≡ arg max
y

h
f(h|y) Pr©Y = y

ª i
(19)

for given β and r. The probability Pr{Y = y} depends on β and radius r. The ICM algorithm is used for
this problem as stated above.

• Calculate posterior probabilities pi(β, r) ≡ pi(byi(β, r);β, r) for i = 1, . . . , n defined in (18). Then, we put
the averaged value by

p(β, r) =

(
nY

i=1

pi(β, r)

) 1
n
. (20)

2. Find the parameters that maximize the average of posterior probabilities by
(bβ, br) ≡ arg max

β, r
p(β, r). (21)

Finally, we obtain the best clustering result by by(bβ, br).



Fig. 3. Neighborhood U1(i) of a pixel i with radius r = 1.

Fig. 4. RSSE (—o—) and p(β,
√

8) (—×—) versus parameter β.

By using the estimate by of y, the mean vectors µ(k) and ν(k) for k = 1, . . . , g and the regression vector Σ`hΣ
−1
hh

of our predictors are estimated. And then, the low-resolution values at each pixel are corrected by the predictor (9)
or (10) or (11) incorporating the mean vectors on respective clusters. After applying the process iteratively, enhanced
multispectral images which preserve the spectral information can be obtained.

6. Enhancement of images based on a panchromatic image

Many satellites are equipped with panchromatic sensors whose spatial resolution is finer than other sensors, see
(a) and (c) of Fig. 6 for example. The panchromatic images aim to supply supplementary information for the low-
resolution images.
We consider the improvement of spatial resolution of low-resolution multispectral images by using a high-resolution

panchromatic image. For example, the spatial resolution of visible lights of LANDSAT 7 ETM+ sensor is 30m, and
that of the panchromatic sensor is 15m, as noted. Our predictors given by the formulas (9), (10) and (11) are employed
for enhancement of the colored image, and compared with the HSV method, the conditional expectation [5] and the
cokriging method [6] through LANDSAT 7 images of Hasselt, Belgium taken at Oct. 18, 1999.

In order to compare the results numerically, the original panchromatic image with resolution 15m and the visible
bands 1 to 3 with resolution 30m are degraded to 30m and 60m resolution respectively. Using the high-resolution
panchromatic image, the low-resolution multispectral images of size 150×150 are corrected. And then, the results are
compared based on the ratio of sums of squared errors (RSSE):

RSSE =

3X
b=1

150X
i, j=1

³bLb
ij − Lb

ij

´2

3X
b=1

150X
i, j=1

³
L

b

ij − Lb
ij

´2
, (22)

where Lb
ij , L

b

ij and bLb
ij for each band b = 1, 2, 3 respectively denote original values to be predicted, averaged values of

the original values by 2× 2 pixels, and the predicted values at pixels of the image under consideration.
Table I tabulates optimal parameters β and maximum averaged posterior probabilities p(β, r) defined at (20)

under the given radiuses r. RSSEs between different methods are also shown in Table I. We note that the number
of clusters selected in this application is five, i.e., g = 5. This table shows that our method in the window W(4)
with r =

√
8 and β = 0.8 is best. We also see that the best result gives the maximum averaged posterior probability

in the third column of the table. Fig. 4 shows RSSEs and averaged posterior probabilities p(β,
√
8) for varying

β = 0.0 : 0.1 : 2.0. We see from this figure that averaged posterior probability increases as RSSE decreases. These
results imply that our strategy for choosing the optimal parameter succeeded in finding the best result.

Fig. 6 shows a portion of the town of Hasselt, which includes urban area, arable land and river. Each figure is
enlarged to observe in detail. The figure (c) of Fig. 6 gives a 2×2 averaged image of the original image (b). Using the
panchromatic image (a) and the clustering result of Fig. 5, the low-resolution colored image (c) is corrected by the
three methods: Our method in the window W(4), conditional expectation due to [5], and HSV show the figures (d),
(e) and (f), respectively. We see from the figure (f) that the color of the image is quite different from that of the



TABLE I
The ratios of sums of squared errors due to correction methods

through the images of Hasselt of size 150×150
RSSE (%)

r bβ(r) p(bβ(r), r) W4 W8 W(4)

1 1.0 50.42 87.83 95.87 84.32√
2 0.4 89.49 87.17 95.09 83.51
2 0.6 95.88 87.18 95.12 83.80√
5 0.9 97.38 87.01∗ 94.96∗∗ 83.48∗√
8 0.8 97.87∗∗ 87.01 95.00∗ 83.39∗∗

3 0.6 97.73∗ 87.00∗∗ 95.00∗ 83.65√
10 0.2 95.71 87.04 95.09 83.67√
13 1.0 97.51 87.11 95.11 83.70

Conditional expectation 85.73
Cokriging 88.86
HSV 261.84

** and * denote the best and the second best values.

Fig. 5. Clustering result (g = 5, r =
√

8, β = 0.8).

(a) Panchromatic image (b) Original color image (c) 2×2 averaged image

(d) Our method W(4) (g = 5, r =
√

8, β = 0.8) (e) Conditional expectation (f) HSV

Fig. 6. Data fusion of the panchromatic image (a) and the low-resolution colored image (c) based on our method (d), the

conditional expectation (e) and the HSV method (f). The figure (c) is derived by 2× 2 averaging procedure of the true image

(b). LANDSAT 7 images of size 60×60 courtesy ESA 1999 — distribution Eurimage, Hasselt, Belgium.



averaged image (c). This means that spectral degradation has been caused by the HSV method. This point can be
also confirmed by Table I, because the assessed value due to HSV is poor. On the other hand, figures (d) and (e) give
sharpened images preserving the spectral characteristics of the averaged image (c).

7. Concluding Remarks

In this paper, the use of GMRF for contextual data fusion of multispectral data with different spatial resolutions
has been studied. We proposed a new method for data fusion based on GMRF. The features of our procedure are as
follows.

• The predictors which incorporate mean vectors on respective clusters are obtained based on the conditional
normal distribution. They are applicable for any dimensions of spectrum data.

• The contextual clustering based on the ICM algorithm is performed. Then, the low-resolution images are
corrected by our predictor combined with the clustering result.

• The optimal parameters β and radius r in the locally dependent MRF are successfully selected by using the
averaged posterior probability p(β, r) as a criterion of the selection.

Finally, the most important but difficult problem is to estimate the regression vector Σ`hΣ
−1
hh of our predictors

because the fluctuations in `i are much smaller than in Li. The predictor based on the better estimate for the
regression vector would improve our approach.
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