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Abstract 

Effect analysis of factors on responses or measurements in generalized linear models is important in many 

application studies, e.g. medicine, sociology, psychology etc. The effect analysis is usually made in testing the 

main effects and interactions for levels of factors. It is significant to consider summary measures of the effects 

of factors, i.e. contributions of factors on explaining a response variable. In the present paper, we discuss the 

partial, association, and total effects of factors in generalized linear models with canonical links. The summary 

effect measures are provided through a discussion of log odds ratio, and it is shown that the effect measures 

are related to the Kullback-Leibler information. The present approach is applied to some important generalized 

linear models. 
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1. Introduction 

Analyses of the effects of factors on responses or measurements have been made in many 
scientific fields, e.g. medicine, sociology, psychology etc. Generalized linear models (Nelder and 
Wedderburn, 1972; McCullagh and Nelder, 1989) are popularly used for describing regression 
relationships between response variables and factors in both experimental and observational studies. 
The generalized linear models (GLMs) are an exponential family of distributions that include 
various important regression models, e.g. ordinary linear regression model (Draper and Smith, 
1966), logistic regression (logit) model (Cox and Snell, 1989; Hosmer and Lemeshow, 1989), 
Poisson regression model (Vonesh, 1990; Christiansen and Moris, 1997), Loglinear model 
(Haberman, 1979) etc. Generalized linear models are also applied to statistical quality control 
(Hamada and Nelder, 1997), because there are many cases of nonnormal responses in industrial 
experiments (Lewis, et al. 2001a). The usual least square approach with response transformation 
and the GLM approach are compared, and Lewis et al. (2001a, b) investigated advantages of the 
latter approach.  

The usual effect analysis with GLMs is to statistically test the main effects and the interactions 
of levels of factors, and to interpret the results. After the analysis, it is important to summarize the 
effects of the factors, that is, comparison of contributions of factors on the variation of response Y. 
In this paper, the partial, association and total effects of factors are discussed for generalized linear 
models. The effect measures for the partial, association and total effects are derived from a 
discussion of log odds ratio, and properties of the effect measures are considered. Examples of 
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GLMs are also provided. 
 

2. Basic Idea of Measuring the Effects of Factors in GLMs with Canonical Links 
    Let X = (X1,X2,…,XK)T be a K×1 factor vector; let Y be a response variable; and let f(y|x) be 
the conditional probability or density function of Y given X = x = (x1,x2,…,xK)T. Then, a GLM with 
the canonical link is described as follows: 

 f(y|x) = exp{(yθ－b(θ))/a(φ) + c(y,φ)},                (2.1) 
where θ and φ are parameters and for ββββ= (β1,β2,…,βK)T 

θ = ββββTx.                                (2.2) 
Without loss of generality, we set a(φ) > 0. The effect of factor Xi = xi may be defined by βi from 
an analogy to the ordinary linear regression model, because the predictor (2.2) increases byβi for 
unit change of the factor. However, it is a question how this effect is interpreted except the usual 
regression model. Let OR(y,y*|x,x*) be the odds ratio with respect to x, x*, y, and y*. Then, we have 

   log OR(y,y*|x,x*) = (y－ y*)ββββT(x－ x*)/a(φ).                    (2.3) 
The first interpretation of this quantity is that (2.3) is the inner product of the response y－ y* and 
the predictorββββT(x－ x*) with respect to a(φ). The second interpretation is as follows. The 
conditional log odds of Y = y over Y = y* given X = x is 
         log{f(y|x)/f(y*|x)} = {- log f(y*|x)} - {- log f(y|x)} 

= the amount of the conditional uncertainty of Y = y* minus that of Y = y given X = x. 
From this, the above quantity is a decrease of uncertainty of y over y*. Hence, the log odds ratio 
(2.3) can be interpreted as the change of uncertainty of y over y* for the change of factors from x* 
to x. When we substitute the baselines x* and y* in (2.3) for the expectations μμμμX and μμμμY, 
respectively, we get 
          log OR(y,μμμμY |x,μμμμX ) = (y－μY )ββββT(x－μμμμX )/a(φ).                      (2.4)  
This odds ratio can be viewed as the total effect of X = x on Y = y. In order to summarize the above 
quantity, we define the total effect of X on Y by 

       eT(X→Y) = E{(Y－μY )ββββT(X－μμμμX)/ a(φ)}.                      (2.5) 
This quantity is the covariance of the response Y and the predictor ββββTX with respect to a(φ). For 
example, the following linear regression model is considered: 

               Y = μ+ββββTx + e,                                     (2.6) 
where error term e is distributed according to normal distribution N(0,σ2). In this case, the 
dispersion parameter is a(φ) =σ2. From this model, we have 
         eT(X→Y) = E{(X－μμμμX)TββββββββT(X－μμμμX)}/σ2 = (Var(Y) -σ2)/σ2. 
This is the ratio of the explained variation of Y by factor vector X to the variation of the error term. 
Since a(φ) in (2.5) is a dispersion parameter of the GLM (2.1), the parameter is referred to as a 
generalized dispersion of the GLM (2.1), i.e. the generalized dispersion of the error of the 
prediction. The numerator in (2.5) 

E{(Y－μY )ββββT(X－μμμμX)} 
can be viewed as a generalized explained dispersion of response Y by the predictor vector X. 
Hence,  
the total effect (2.5) can be interpreted as the ratio of a generalized explained variation of response 
Y by factor X to a generalized error variation of the GLM (2.1). 
    Second, we consider the partial effects of Xi on Y. Let X (i)= (X1,X2,..,Xi-1,Xi+1,…,XK)T ; let μ
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i(x(i)) be the conditional expectation of Xi given X(i) = x(i); letμμμμ X(x(i))  =(x1,x2,..,xi-1,μ
i(x(i)),xi+1,…,xK)T, i.e. the conditional expectation of X given X(i) = x(i); and letμY(x(i)) be the 
conditional expectation of Y given X(i) = x(i). Then, we get 

log OR(y,μY(x(i))|x,μμμμX(x(i))) = (y－μY(x(i)))βi(xi－μi(x(i)))/a(φ).         (2.7) 
The quantity (2.7) can be viewed as the direct effect of level Xi = xi on Y = y. By taking the 
conditional expectation with respect to Xi and Y given X (i)= x(i), we have 

E{log OR(y,μY(x(i))|x,μμμμX(x(i))|X (i)= x(i))} =βiCov(Y,Xi|X (i)= x(i))/a(φ),           (2.8) 
where Cov(Y,Xi|X (i)= x(i)) are the conditional covariance of Y and Xi given X (i)= x(i). The partial 
effect of Xi on Y is defined by the expectation of the above quantity with respect to X (i): 

eP(Xi →Y) =βiCov(Y,Xi| X(i))/a(φ),                           (2.9) 
where Cov(Y,Xi|X(i)) is the expectation of Cov(Y,Xi|X(i)= x(i)) with respect to X(i), i.e. for the 
marginal density or probability function of X(i), g(x(i)), 

Cov(Y,Xi| X(i)) = ∫Cov(Y,Xi| X(i)= x(i))g(x(i))dx(i). 
The partial effect (2.7) can be interpreted as the ratio of the generalized partially explained 
variation of response Y by factor Xi to a generalized error variation of the GLM (2.1). For example, 
in an ordinary linear regression model (2.6) we have 

eP(Xi →Y) =βi
2Var(Xi| X(i))/σ2. 

      Third, the total effects of factors are discussed. According to the above discussion, the direct 
effect of factor vector X(i) is defined by 

eP(X(i) →Y) = Σ βjCov(Y,Xj| Xi)/a(φ).                         (2.10) 
                          j≠i 

The total effect of factor Xj is defined by 
eT(Xi →Y) = eT(X→Y)－eP(X(i) →Y) 

 
            =βiCov(Y,Xi)/a(φ) + ΣβjCov(μj(Xi ),μY(Xi ))/a(φ).             (2.11)  

j≠i 
The total effect is interpreted as the inner product of y－μY and the predictor 

βi(xi－μi)/a(φ) + Σβj(μj(xi )－μj)/a(φ). 
j≠i 

By subtracting the partial effect of Xi (2.9) from the total effect (2.11), we define the association 
effect of Xi by 

eA(Xi →Y) = eT(Xi →Y)－eP(Xi →Y)  
=βiCov(μi(X(i)),μY(X(i)))/a(φ) + ΣβjCov(μj(Xi ),μY(Xi ))/a(φ).    (2.12)  

j≠i 
The above effect is interpreted as the effect that is made by the association between Xi and X(i). If Xi 
is independent of X (i), 

eA(Xi → Y) = 0. 
The total effect is 

eT(Xi → Y) = eP(Xi → Y) + eA(Xi → Y). 
By replacing the factor Xi in the above discussion by the set of factors, the total, direct and indirect 
effects of the set of factors can be defined. The following quantity is the contribution proportion of 
the effect of factor Xi on Y: 

C(Xi) = eT(Xi → Y)/eT(X→Y).                     (2.13) 
It is seen that the effects defined above are scale-invariant. If Xi (i =1,2,…,K) are mutually 
independent, from (2.5) we have 
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                         K                 K 
eT(X→Y) = ΣeP(Xi → Y) =ΣeT(Xi → Y).                        (2.14) 

                        i=1              i=1 

From the above consideration, we have 
eT(X → Y) = eT(Xi → Y) + eP(X(i)

 → Y) 
= eP(Xi → Y) + eT(X(i)

 → Y). 
 
3. Application to GLMs  
    In this section, the above idea is applied to normal distributions and the logit model. The 
details are omitted. 
 
4. Numerical Examples 
    The data concerning the effects of AZT in showing the development of AIDS sysamptoms 
(Agresti, 1996, p.119) and the data in a study of length of time spent on individual home visit by 
public nurses (Daniel, 1999, pp. 348-353) are reanalyzed with the present approach. The details are 
omitted. 
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