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We will consider two visualization tools for data mining in this talk:
Grand Tour and Parallel Coordinates. For grand tour, many statistical
packages (XLISP-STAT, SPlus, Statistica, and etc.) and visual data
mining tools like XGobi (http://www.research.att.com/areas/stat/xgobi) and
CViz (http://www.alphaworks.ibm.com/tech/cviz) have installed the feature
after the inception of this idea by Asimov (1985). In this talk, I will give
the algorithms for geodesic grand tour as implemented in XLISP-STAT
and a modification of the grand tour known as Tracking Grand Tour
suggested by myself (2001). Parallel coordinates has attracted many
visual data miners since this is another form of multivariate scatterplots
but in simpler form. However, the viewer of the plot may have wrong
interpretation of the data depending on the arrangement of the variables.
Usual approach to set the order of the variable is the arrangement of the
variables as given in the data base. In this talk, I give two arrangement
algorithms: permutation method and component method. The visual effects

of these algorithms will be discussed.

key words: Grand Tour, Tracking Grand Tour, parallel coordinates,

permutation method, component method.



Figure 1 How can we tour all parts of the earth in the
shortest total length?

Figure 2 geodesic rotation



1. Algorithms of the Grand Tour

Steps of geodesic grand tour for p-dimensional data is as follows.

1) Choose 2 p-dimensional unit normal random vectors

2) construct an orthonormal basis B pxp that defines a rotation plane

from the first vector to the second one while keeping the orthogonal
complement of the plane fixed.

3) construct a rotation matrix R ,x, on the rotation plane
4) apply BRB’ to the data X.,.«, a number of times

5) draw the first 2 coordinates of the transformed data

6) repeat the above process indefinitely

Details of each step are as follows.

1) generate w; wy ~ N(0, I,)
2) construct orthonormal basis B pxp using the Gram-5Schmidt process,

a) find the orthonormal basis {u;, uy} from { w; wy}
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b) find the next p—-2 dimensional orthonormal basis
{u3’-" ’up} L {ul,uz}
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for k=2,...,p—1, and Wy is p-dimensional vector with elements O

except 1 on the k-th element.

o) Boxp= (uj, ...,up)



3) construct R, for rotation angle 8 as follows

cosd —siné 0...
sind coséd O ...
R pxp= O O 0 o

O OO

0 0 0..0
4) transformed data: XBRB’
the number of rotations is chosen uniformly [0, %],

where 6 is a small angle like 0.1

2. Tracking GT

With GT, the transformed data drawn on the screen is erased when
the new transformed data 1s drawn. For TGT, do not erase the

transformed data until a new 2 vectors for the new tour is selected.

3. Parallel Coordinates

3.1 Algorithms
A. permutation method
consider all pairwise permutation of the axes so that every possible

adjacency 1s present.

Example: 4 variables named as 1,2,3, and 4.

2 permutations will do: pml = {1,2,4,3}, pm2 = {2,3,1,4}.

=> variable 1: (1,2) in pml, (1,3) and (1,4) in pm2
variable 2: (2,1) in pml, (2,3) in pm2, and (2,4) in pml
variable 3: (3,1) and (3,2) in pm2, (3,4) in pml
variable 4: (4,1) in pm2, (4,2) and (4,3) in pml.

Wegman (1990) gives a simple formulation for this arrangement.

Let Ui(j)be the j—-th permutation for the i-th variable.



The formula for the j—-th permutation for p number of variables is:

UZ(]-FI) _ (Uz(])+1) mod ,

where j=1,... [-L] oV =y, v;=1.

Vi =Lo; 4+ (=17 mod p, i=1,2,....,p—1,

0 mod p=p mod p=p, x mod p=(p+x) mod p, if x<0.
and [ -] s the greatest integer function.
This gives [(p+1)/2] permutations.
Now the problem is to choose the best permutation among these.

Criterion:

ﬁ_
minize 2 2%5;’ : Dz'j: 2 2 ﬁ%ij . Dz'j
t=1s= =172

where Dj; is the disimilarity between variable i and j, and

~J1 wvariables 1 and j are neighbours
ny;= .
0  otherwise

a disimilarity is the Euclidean distance

D;= \/ ;1( bri— bkj)2

where

X ki MZ%Z(X z'j)
Maxi(x z'j) - MZ%Z(X ij

b=

), jZI,...,n, k 1,...,1)

and x ;; is the i-th observation on the j-th variable

B. Component method (Huh)



basic idea: rearrange the variable in the order of the magnitude of

principal component

Let X ,., be the data set with n observations and p variables. Then

our procedure to rearrange the variables goes as follows.

Step 1. Obtain the principal component u corresponding to the largest

eigenvalue of the similarity matrix obtained from the data matrix X.

Step 2. Obtain the index k corresponding to the largest absolute value
of the vector u. We arrange the variable corresponding to this index in

the first position.
Step 3. Reduce the data matrix X by eliminating the k-th column.

Step 4. Apply the above 3 steps until we have no more variables to

select.

3.2 properties of each method
PM method: minimizing the total distance among all the possible
combinations
=> find the permutation where similar variables are arranged closer
each other
CM method: arranges the variables in the order of their capability of

explanation of the data.

3.3 experimentation

consider 2 data sets: iris data and imports car data (given in UCI data
base). For each data, we applied 3-group k-means method, and then

variables are arranged by PM and CM methods.
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(a) iris data: variable arrangement as given in UCI data base
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(¢) iris data: arranged by CM
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(a) car data: variable arrangement as given in UCI data base
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(b) car data: variable arrangement by PM
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(¢) car data: variable arrangement by CM



