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Summary 
 
There has been controversy for the quantal nature of neurotransmission of mammalian 
central synapses. If quantal variance is low, an amplitude histogram of synaptic responses 
is expected to show equally spaced peaks. However, histograms have disadvantages of 
being discontinuous and their profile depends on the choice of bin size. In order to obtain 
a continuous and smooth estimate of probability distribution, we used nonparametric 
methods of density estimation based on local likelihood or penalized likelihood principle. 
Application of these methods to GABAergic IPSCs in Purkinje cells in rat cerebellar 
slices gave smooth but multimodal density estimates of amplitude fluctuations. Analysis 
of the density curves allowed us to estimate the quantal size. These procedures were used 
to examine the site of action of amines that induced a long-term facilitation of the IPSCs. 
 
 
1. Introduction 

Plasticity of synaptic transmission is thought to underlie higher functions of brain 
such as learning and memory. We have been studying the mechanisms of GABAergic 
transmission in the cerebellar cortex.  Inhibitory postsynaptic currents (IPSCs) are 
recorded either from Purkinje cells or from basket cells using slice patch recording 
techniques.  These GABAergic transmissions are known to be modulated by a number of 
agents, such as β-adrenergic agonists, serotonin or glutamate.  We have been studying the 
mechanisms of actions of these agents and are particularly interested to know whether 
their actions are presynaptic or postsynaptic.  One of the methods of analyzing changes in 
synaptic transmission is quantal analysis (Redman, 1990; Stricker and Redman, 1994). 

The quantal hypothesis for synaptic transmission assumes that neurotransmitter is 
released stochastically from the presynaptic terminal in packets (quanta) of similar size.  
Although the evidence for the quantal release is convincing at the neuromuscular junction, 
it is much less clear for mammalian central synapses, particularly for inhibitory synapses.  
A conventional method for analyzing synaptic fluctuations is to construct a frequency 
histogram of recorded synaptic amplitudes.  However, such a histogram is discontinuous 



and the profile depends on the choice of bin size.  It is therefore desirable to obtain a 
continuous and smooth estimate of the probability density of the fluctuations.  To this end, 
we applied two methods of density estimation to quantal analysis: local likelihood density 
estimation (Loader, 1996) and penalized likelihood density estimation (Silverman, 1982).  
 
2. Sample records 

In Figure 1A, sample records from a Purkinje cell are shown.  IPSCs were evoked by 
field stimulation at 1 Hz and thirty successive traces are superimposed.  To perform 
quantal analysis, it is desirable to make the signal-to-noise ratio as large as possible.  For 
this purpose, 5 µM CNQX was added to the perfusion medium to block EPSCs.  A 
recording pipette filled with 140 mM KCl was used, so that the equilibrium potential of 
the IPSC is about 0 mV and the membrane potential was held at -80 mV.  In these 
conditions the direction of the current is inward and the amplitudes are quite large.  In this 
example, the magnitudes of the current clearly vary in a step-wise manner and the 
frequency histogram of the amplitude shows discrete peaks, apparently showing quantal 
nature of synaptic transmission (Fig. 1B).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sample records (A) and histogram (B) of GABAergic IPSCs recorded from a 
Purkinje cell 
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3. Parametric quantal models 
The classical model of quantal synaptic transmission assumes that the mean 

amplitudes of quantal components are separated by equal increments (the quantal 
amplitude) and the variances associated with the components also increment by the 
variances of quantal components and background noise.  The mean of rth quantal 
component is then given by µr= rq, where q is the mean of quantal amplitude and the 
variance of µr is given by σr

2 = σn
2 + rσq

2, where σn
2 is the noise variance and σq

2 is the 
quantal variance.  Assuming that the release process of quanta is described by the 
binomial or Poisson distribution and that the distributions of each quantal response and 
noise obey normal distributions, the probability density of amplitude fluctuations is given 
as a mixture of normal distributions 
 
 
 
 
where πr is the binomial or Poisson probability. 
 
 

 
Figure 2. Maximum likelihood fit of the Poisson quantal model to a simulated data set. 
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Figure 2 illustrates the procedures of estimating quantal parameters of an artificial 

set of data created by generating random numbers according to the Poisson model.  The 
solid curve is the estimate using the maximum likelihood method.  With this method we 
can obtain estimates of quantal parameters.  We applied this approach to the data of IPSCs 
and found that some of the data could be fitted well by the Poisson or binomial quantal 
model, but many of the data could not.  We therefore turned to nonparametric approach. 
 
4. Density estimation methods 

Several types of nonparametric density methods have been proposed.  The 
histogram can be regarded as a simple method of density estimation, but it has several 
problems: it is a step-wise function and is not smooth; the form of the histogram depends 
on the choice of the binwidth and also on the choice of the starting point of the histogram  
(Simonoff, 1996).  Using histograms, therefore, it is very difficult to precisely distinguish 
and locate the peaks in the density. 
 
 

 
Figure 3. Kernel density estimate to the simulated data set of Figure 2.  Df: degrees of 
freedom. 
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The kernel density is a popular estimator of density.  Figure 3 gives the result of 
applying the kernel density to the same data set of the Poisson model in Figure 2. 
Smoothness of the estimate depends on the value of the bandwidth h.  In this example, the 
bandwidth was determined by AIC (see below).  The peak of failures and the first two 
quantal peaks are well reproduced, but the curve becomes undulant at peaks of larger 
amplitudes.  The kernel density is known to have some problems, including that it has a 
boundary bias and its local adaptivity is not sufficient (Simonoff, 1996). 

Loader (1996; 1999) recently proposed the local likelihood density estimation.  In 
this method, the likelihood problem with a kernel function K as a weight, is evaluated at 
each value of x.  At x and near x, the logarithm of the density is represented by a 
polynomial function and the value of the density f at x is given by the exponential of the 
constant term: 

                      n        xi _ x                                 u _ xLx(θθθθ ) = Σ K  _____   log fx(xi ,θθθθ ) _ n  K   _____   fx(u,θθθθ ) du              i=1        h                                        h

log fx(u,θθθθ ) = θ0 + θ1(u _ x) +...+ θp(u _ x) p

 f^(x) = fx(x,θθθθ^) = exp(θ^
0)  

 
If only the constant term is used for the polynomial, the estimate reduces to the 

kernel density. Using a higher polynomial is expected to reduce the bias of the kernel 
estimator and to show more local adaptivity.  Usually, the polynomial degrees of one or 
two, that is, local linear or quadratic function, are sufficient (Loader, 1996; 1999). 

The method also contains the bandwidth h as a smoothing parameter, which can be 
determined by AIC with the following formula (Loader, 1999). 
 
                                    n                                  n
AIC( f^) = _ 2Σlog f^(xi) + 2Σinfl(xi) + 2n     f^(u) du _ 1
                                  i=1                              i=1

                ∂2LxH(x) = _ _______ 
              ∂θθθθ∂θθθθΤ

infl(x) = K(0)(H-1)11(x)
            n 
ν = Σinfl(xi)           i=1  
where ν is called the degrees of freedom. 



The solid curve in Figure 4 is the local quadratic estimate of the Poisson model data 
with the bandwidth determined by AIC.  The quantal peaks of larger amplitudes are 
smoother and more faithfully estimated than the kernel density method.  This kind of 
simulation suggested appropriateness of this method for application to quantal analysis.  
However, when we estimate the densities of actual data, it will be desirable to have 
another method of different principle, and if the two different methods give similar results, 
we will be more convinced with the results. 

 
 
Figure 4. Local quadratic estimate to the simulated data set. 
 

We therefore tried another method of density estimation: penalized likelihood 
method of Silverman (1982).  This method is again an extension of the maximum 
likelihood principle, but the idea is different from the local likelihood.  As in ordinary 
maximum likelihood methods, it is a global likelihood principle, but it contains an 
additional term called roughness penalty.  This penalty term ensures the smoothness of 
the estimator and the degree of smoothness is controlled by the smoothing parameter λ.  
In actual calculation, the logarithm of density is represented by a spline function.  And the 
smoothing parameter λ again can be determined by AIC (O’Sullivan, 1988). 
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                      n

L( f ) = Σlog f (xi) 
_ Φ _ n   f (u) du

                    i=1

        nλ
Φ = ___   [Dm(log f )(u)]2 du         2
                            M

log f (x) = Σαi Bi(x)
                           i=1  
                                    n

AIC( f ^ ) = _ 2Σlog f ^(xi) + 2 tr([J^ + λΚΚΚΚ ]-1J^)
                                  i=1

                             n

J^ij  =   exp[Σα^
i Bi(u)] Bi(u) Bj(u)du,  Κ ij =   B(m)

i(u) B(m)
j(u)du

i=1  
where the trace term in the AIC formula corresponds to the degrees of freedom. 

Figure 5 shows the penalized likelihood estimate of the Poisson model data with λ 
determined by AIC.  The derivative of penalty of order 3 is used in this calculation.  The 
estimated curve is very smooth and quantal peaks are satisfactorily estimated. 
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Figure 5. Maximum penalized likelihood estimate (MPLE) of order 3 to the simulated 
data set.



5. Estimation of quantal amplitude 
Figure 6A shows a superimposition of the local likelihood and penalized likelihood 

estimates to the simulated data set.  They are very to close to each other and close to the 
theoretical curve.  When the quantal peaks are equally separated as in this case, the 
quantal size can be estimated as the period of the peaks.  To this end, we can take the 
spectral density function of the density curve using Burg’s method, as shown in Fig. 6B.  
The spectrum has a large DC component, which corresponds to the overall trend of the 
density, and a single peak at 0.01 of the frequency.  The reciprocal of the frequency gives 
an estimate of the period, 100 in this case, which exactly coincides with the quantal size 
of the model we used.  

 
Figure 6. A. Superimposition of local likelihood and penalized likelihood estimates to the 
simulated data set.  B. Spectral density estimate for the penalized likelihood estimate. 
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6. Application of density estimation methods to IPSC data 
Figure 7A gives the local likelihood density estimate of the sample data set of IPSCs 

shown in Figure 1.  Very clear and smooth peaks are observed and the first several peaks 
are almost equally spaced.  The lower panel shows the penalized likelihood estimate of 
the same data.  The estimated curve is quite similar to the local likelihood estimate. 
 
 

 
Figure 7. Local likelihood (A) and penalized likelihood (B) estimates to the data of IPSCs 
shown in Fig. 1.
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Figure 8 gives a superimposition of the two estimates, showing that the two curves 

are almost identical, except for larger values of amplitude.  The lower graph is the spectral 
density of the penalized likelihood estimate.  It has a single sharp peak and the period is 
estimated to be 53.3 pA.  The vertical lines in the upper graph are drawn with a constant 
interval of this value starting at 0 pA.  In addition to the peak of failures, the first four 
non-zero peaks are located almost exactly on these lines.  This strongly suggests that they 
are in deed quantal peaks with the quantal size being about 53 pA.  
 

 
Figure 8. A. Superimposition of local likelihood and penalized likelihood estimates 
shown in Fig. 7.  B. Spectral density estimate for the penalized likelihood estimate. 
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7. Effect of voltage changes 
In Figure 9, the effect of changing the holding potential is shown.  Changing the 

holding potential from –60 mV to –80 mV makes the driving force larger and thus the 
responses become larger.  In this manipulation, we expect that the positions of quantal 
peaks are expanded proportionally, but other statistics of the responses should remain the 
same.  As expected, the proportions of failures are the same in both cases.  When the 
current scale of the density estimate at –60 mV is increased by 125% and superimposed 
on the estimate of –80 mV, the positions of the first four peaks are almost the same and the 
areas under the components are quite similar.  This type of change may be regarded as a 
result of a postsynaptic effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Effect of changing the holding potential on the amplitude distributions 
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8. Effect of Ca concentrations 
Figure 10 illustrates the effect of lowering Ca and increasing Mg concentrations on 

the amplitude distributions.  By this manipulation, the proportion of failures is increased 
by about 3-fold, and the peaks of large amplitudes disappeared.  In Fig. 10C, the two 
estimates are superimposed with the same abscissa and ordinate scales.  It appears that 
there is one-to-one correspondence between the first three peaks.  This kind of changes 
may be a typical of a presynaptic effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Effect of lowering Ca and increasing Mg concentrations on the amplitude 
distributions. 
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9. Effect of isoproterenol 

Mitoma and Konishi (1999) recently showed that β-receptor activation causes a 
facilitation of GABAergic IPSCs in the rat cerebellar cortex.  Figure 11A shows the 
density estimate in the control condition.   Again several peaks can be observed in the 
density estimate.  Figure 11B and C show the effect of the β-agonist, isoproterenol (Isp) 
in two different periods after introduction of Isp.  In the first period after applying Isp, it 
can be seen that the proportion of failures is decreased and in stead the proportion of the 
first non-zero peak is increased.  In the later period, the height of the first peak is 
decreased and the third peak is increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Effect of isoproterenol on the amplitude distributions.  
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In Figure 12, the three curves are superimposed.  The first three peaks are 
presumably corresponding and the effect of Isp is to decrease the proportion of failures 
and increase the peaks of larger amplitudes.  In this case, there may be a slight sign of 
left-ward shift in the positions of these peaks in the later period of Isp treatment. This 
experiment suggests that the potentiating effect of Isp is not due to an increase in the 
quantal amplitudes but due to a change in the statistics of the response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 Superimposition of the three density estimates in Figure 11. 
 
 
10. Conclusion 

Application of nonparametric density estimation methods revealed discrete peaks in 
the amplitude distribution.  When the peaks were equally separated, an estimate of the 
quantal size could be obtained.  When the synaptic transmission was modulated by some 
manipulations, we could obtain information about the mechanisms of the changes by 
tracing the changes in peak components in the density estimates. 
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