
Representing Knowledge in the Statistical Sys-

tem Jasp

Ikunori Kobayashi1 , Junji Nakano2 , Yoshikazu Yamamoto1

and Takeshi Fujiwara3

1 Tokushima Bunri University, 1314-1 Shido, Kagawa 769-2193, JAPAN
2 The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Tokyo
106-8569, JAPAN
3 The Graduate University for Advanced Studies, 4-6-7 Minami-Azabu,
Tokyo 106-8569, JAPAN

Summary

In this article, we describe a framework to assist the process of analyzing
data with knowledge in the statistical system Jasp. Although newly de-
veloped statistical systems have many statistical methods are sophisticated
enough, most of users have more or less difficulties to master them and
are in danger of swallowing results from a system without thinking deeply.
The mechanism to assist users in Jasp has been implemented for prevent-
ing these problems. Knowledge used in this mechanism is represented as
rules of “condition - action” form in the class definition. Jasp with built-
in knowledge for statistical analysis can give advices to users, or can notify
problems when they appear. Such abilities are useful for users, especially for
students and novices of statistics or Jasp. We designed the form for repre-
senting knowledge so simple that users also can use Jasp as an environment
to implement new statistical knowledge by themselves.

2

Keywords: Jasp, Object-Oriented Language, Rule, Statistical knowledge,

1 Introduction

Many statistical systems have been developed from the dawn of the com-
puter, and have continued to adopt the new computer technology of each
age. Famous examples are, to name a few, SAS (SAS Institute Inc. 2001),
S (Chambers 1998) and XploRe (Härdle, Klinke & Müller 1999). Recently,
the dissemination of cheap and powerful personal computers and the Internet
offer new possibilities to data analysis environments. For example, we are
able to browse many kinds of data easily on the Web, to stock huge data and
to handle them even on our laptop computers. In order to use such modern
technologies in statistical analyses effectively, several statistical systems are
newly designed using recent technologies such as the Java language and the
distributed computing. Our statistical system named Jasp (JAva based Sta-
tistical Processor) (Nakano, Fujiwara, Yamamoto & Kobayashi 2000) is one
of them.

It is indisputable that statistical systems are useful for analyzing data. How-
ever, even if we have a very efficient statistical system, it does not ensure
that we have meaningful results form the statistical analysis using it auto-
matically. Here, we consider two main reasons for this fact. First, systems
are not able to evaluate the calculation results such as many kinds of statis-
tics, figures and tables. This work should be done by users considering the
object of statistical analysis. Second, if we implement many functions in a
system, the system becomes complex and difficult to operate. This is clearly
shown by the fact that most textbooks of statistical systems are very thick.
As too many procedures are available for particular data, it is not easy to
choose suitable procedures from candidates for people with less experience
of statistical analysis, even if he or she studied statistical analysis from some
textbooks.

We need to solve these problems for making statistical systems more useful.
As evaluation of the obtained results depends on the object of the data anal-
ysis, it is almost impossible to realize functions for it in a general purpose
statistical system, even if we use techniques of new AI (Russell & Norvig 1995)
research results. However, it may be possible to implement a function to in-
form basic mistakes of using statistical procedures, and suggest next possible
procedures to try to solve them. Second, it is preferable to show a list of
suitable instructions or commands to users. It is necessary to select them
carefully according to the state and the history of the analysis, because the
list of all applicable functions is too long in recent general purpose statisti-
cal systems. For example, when a user obtains a regression model, a list of
instructions to calculate statistics for diagnosing a regression model is better

Dept. of Math.

3

Jasp
Function

Jasp
Class

Java
Class

Jasp

components

C, Fortran
Programs

JNI

Figure 1: Jasp programming

than a much longer list for all the regression procedures.

Considering these requirements, we try to implement an ability to assist
users using statistical knowledge stored in Jasp. Knowledge representation
in the system should be simple, because users want to understand easily what
kinds of knowledge have been built in the system and how they are used in
analysis. We decide to describe statistical knowledges in the similar form as
procedures or functions. In Jasp, a knowledge is expressed as a rule which is
composed of a condition part and an action part. The rule is embedded in a
class definition, and the scope is limited in it. A rule can have a priority to
avoid conflict when several conditions of rules in the same class become true
simultaneously.

2 Implementing Knowledge in Jasp

Statistical systems are required to be able to express various computation
procedures easily and clearly, to draw graphics flexibly, and to customize
functions for routine tasks. For realizing these purposes, most statistical
systems use their programming languages as interfaces between systems and
users. Jasp also has a programming language, i.e., the Jasp language. The
Jasp language is based on the Pnuts language (Tomatsu 2000), which is a
script language written in and for the Java language. We modified Pnuts for
statistical users to be able to describe matrix handling and basic statistical
computations simply, and to get graphical results easily. Jasp has three
ways of programming, which are shown in Figure 1, and their purposes are
explained in Table 1 (Kobayashi, Fujiwara, Yamamoto & Nakano 2001).

We implement rules in the Jasp class. The Jasp class is a module in which
related Jasp functions are stored to use them at the same time. This imple-
mentation helps us to avoid needless conflicts with several rules.

Dept. of Math.

4

Table 1: Purposes of Jasp programming
concept purpose

Jasp Function Description of a procedure of calculations
Jasp Class Bundling related Jasp functions according to a mean-

ingful statistical technique
Java Class System extension

We have many kinds of rules for statistical objects. Conditions for data range
are simple but useful rules; values of human height must be between 0 and 3
meters. We also have rules for timing of using methods; diagnostic procedures
must follow the model building procedures. Significance levels are important
rules for evaluating statistics; 5% is used as a significance level in biological
sciences, but is too large in production engineering. Some of them are widely
available for many data sets, but others are useful in limited field. We think
most of such rules can be described in a simple general form. If the form is
complex, users have difficulties to express their knowledge in the format.

A Jasp class is defined by the form

jaspclass NAME(SUPER) BODY

where NAME is the name of the class, SUPER is the name of the super class. If
there is no super class, (SUPER) can be omitted. BODY consists of constructors,
methods, private functions and rules. Private functions are Jasp functions
which are effective only in the class, and methods are used as interfaces of
private functions to the outside of the class. Constructors are methods of the
same name as its class name, and generate instances of the class.

Rules are defined in a Jasp class on the similar position as methods in the
form

rule NAME(PRIORITY) { CONDITION }{ ACTION }

where NAME is a name of the rule, PRIORITY is a real number which lies
between 0 and 1. CONDITION shows the condition for the rule, and ACTION
is the procedure which should be executed when the condition becomes true.
The condition part and the action part are expressed by Jasp functions.
In the condition part, a Jasp function which is called with no argument,
returns a logical value (true or false) and does not change any field value is
allowed. The action part can contain Jasp functions which are called with
no argument, returns no value and can change some values of fields.

For checking rules, we send “checkRules()” message to an instance of the
Jasp class. We assume that there is the Jasp class named LinearRegression

Dept. of Math.

5

in Jasp, and the class has some rules about linear regression. We have to
make an instance of the class by invoking the constructor first, and send
“checkRules()”.

> lr_test = LinearRegression("test.dat")
> lr_test.checkRules()
[check_t_value(0.7), check_multicolinearity(0.5)]

Jasp returns names of rules with number of the local priority in the form of a
list, according to priorities. Each condition of the rule in this list is evaluated
as true.

To invoke the action part of the rule of the first element in the list, “invokeFirst()”
message can be used.

> lr_test.invokeFirst()

Then, the method to calculate the t-statistics will be called. Each rule can
be invoked by using “invokeRule()” message with the name of a rule:

> lr_test.invokeRule("check_t_value")

The “invokeRule()” message also can accept integer as the argument:

> lr_test.invokeRule(2)

To execute all rules in the list, “invokeAll()” message is available.

The inheritance mechanism in object oriented programming is applied to the
rules. Then, a derived class can refer the rules in the upper class as well as
methods and fields. We can mount particular rules with stability of Jasp by
using this mechanism.

3 Examples

Figure 2 shows a part of the program for linear regression analysis in the
Jasp class named LinearRegression. This program focuses on calculating
the VIF (Variance Inflation Factor) and to check the multicolinearity by it.
There are two method, a private function and a rule in this class. “...”
means omission. The methods behave constructors, because their names are
the same as this class. The constructor is invoked when the instance is cre-
ated. The variables prefixed “this.” are treated as fields in this class. The
private function named vif is for calculating the VIF with three arguments
(a dependent variable, independent variables and a total sum of squares).

Dept. of Math.

6

The rule named check multicolinearity is for checking the multicolinearity
using the VIF if it has never been checked. The priority of this rule is set to
0.5. In this action part, the VIF of each independent variable is compared
to 10. If this is larger than 10, independent variables have multicolinearity
(Ryan 1997), and Jasp notifies it to the user.

4 Conclusion

If knowledge of statisticians is stored and can be used effectively, statistical
systems become much more convenient for naive users. Therefore, we propose
how to represent and use statistical knowledge in the general purpose statis-
tical system Jasp. Knowledge in Jasp is described by a simple “condition -
action” form as a rule, and is stored in Jasp classes. Jasp shows applicable
procedures when users require some assistance. This ability will be useful for
users of Jasp, when they are at a loss what to do next. Jasp assists user’s
analysis by proposing next procedures. However, Jasp can not have any re-
sponsibility for the analysis, because objects of analysis are different for each
user and are not stored in Jasp as general knowledge. Such knowledge can
be implemented by users for their particular purposes.

At present, this ability to assist user’s analysis is available only on the CUI
(Character User Interface) window. We plan to improve Jasp to use rules on
the GUI (Graphical User Interface) windows.

References

Chambers, J. M. (1998), Programming with data: a guide to the S language,
Springer.

Härdle, W., Klinke, S. & Müller, M. (1999), XploRe – Learning Guide,
Springer. (http://www.xplore-stat.de/)

Kobayashi, I., Fujiwara, T., Yamamoto, Y. & Nakano, J. (2001), The Lan-
guage and the Extendibility of the Statistical System Jasp. In: Proc. in
ISM Symposium - Statistical software in the Internet age -, 65–73.

Kobayashi, I., Fujiwara, T., Yamamoto, Y. & Nakano, J. (2001), Extendibil-
ities of a Java based statistical system. In: Proc. in International Con-
ference on New Trends in Computational Statistics with Biomedical Ap-
plications, 109–115.

Nakano, J., Fujiwara, T., Yamamoto, Y. & Kobayashi, I. (2000), A statistical
package based on Pnuts. In: COMPSTAT2000 Proceedings in Compu-
tational Statistics, 361–366. Heidelberg: Physica-Verlag.

Dept. of Math.

Dept. of Math.

7

jaspclass LinearRegression {
method LinearRegression(file){

...
this.LinearRegression(y, x)

}
method LinearRegression(y, x){

this.depVar = y ; this.indepVar = x
this.coef = coef(y, x) // coefficient
this.y_hat = forecast(x, this.coef)
this.st = cal_st(y) // the total sum of squares
...
this.vif = vif(y, x, this.st)
this.checked_vif = false // flag

}
function vif(y, x, st){

row = x.nr // number of row
col = x.nc // number of column
ans = Vector(col-1)
for(i=2; i<=col; i++){
new_x = x[,!i] // delete i-th column
coe = coef(y, new_x)
tmp = y - new_x*coe
tmp = tmp.trans * tmp
mm = sqrt((st - tmp) / st)
ans[i-1,1] = mm

}
ans.setColLabel(["VIF"])
return ans

}
rule check_multicolinearity(0.5) {

this.checked_vif == false
}{

str = ""
size = this.vif.nr
var = this.indepVar.getColLabel()
for(i=1; i<=size; i++){
if(this.vif[i,1] >= 10){

str = str + var[i] +" "
}

}
this.checked_vif = true
str = str + " multicolinearity.\n"
str = str + "You should check your model!\n"
str

}
...

}

Figure 2: A program for checking multicolinearity in a Jasp class

Dept. of Math.

8

Ryan, T. P. (1997), Modern Regression Methods, John Wiley & Sons.

Russell, S. & Norvig, P.: (1995), Artificial Intelligence, Prentice Hall.

SAS Institute Inc. (2001), Statistical Analysis System,
http://www.sas.com/

Tomatsu, T. (2001), Pnuts, http://javacenter.sun.co.jp/pnuts/

Dept. of Math.

