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1 Introduction

Recently, Genon-Catalot, Jeantheau and Laredo [10] (henceforth designated GJL) have considered a
two-dimensional simple stochastic volatility model (X,Y ) which satisfies a dynamics{

dXt = V0(Xt, θ)dt+ V (Xt, θ)dWt, X0 = η,

dYt =
√
XtdBt, Y0 = 0

where W and B are two independent Wiener processes, X and Y are an unobserved strictly stationary
hidden diffusion process and an observable process, respectively, and an initial random variable η > 0 a.s.
is independent of (W,B) and distributed with the stationary distribution of X . From this continuous
time model, GJL constructed a discrete time hidden Markov model in the sense of Bickel et al. [4], and
they also presented a moment estimation for an unknown parameter θ included in a hidden diffusion
process based on discretely sampled data with an equidistance. It seems advantageous that a diffusion
coefficient of hidden diffusion process may contain unknown parameters since, so far, for estimation of
unknown parameters in diffusion coefficient, many authors have considered an asymptotic rule such that
the time mesh of sampled data tends to 0 (one of interesting alternative method based on martingale
estimating functions has been developed by Bibby and Sørensen [3]). GJL focused on mixing property
of the model and applied classical limit theorems based on the property.
Here, motivated by GJL, we follow the similar argument to them and extend their model so that

it may contain general Lévy processes as driving (noise) processes of a latent process and an observed
one. These two Lévy processes may be correlated. Moreover, instead of restriction to simple stochastic
volatility models in GJL, we will assume only a certain measurability condition for dynamics of our models
which looks somewhat abstract. Our model includes the case of GJL. In particular, a latent process may
possess the ε-Markov structure which covers many type of stochastic processes such as strong solutions
of stochastic differential equations (with time delay) and higher order discrete time Markov processes.
Anyway, mixing property of a latent strictly stationary Markov process is also the essential assumption
for us as GJL [10].

2 A class of partially observed stochastic systems

We will consider stochastic processes S = {(Xt, Yt)}t∈R+ and L = {(L(1)
t , L

(2)
t )}t∈R+ on a given probabil-

ity space (Ω,F, P ) whereX and Y areRd1- andRd2-dimensional càdlàg stochastic processes, respectively.
We assume that only Y is observable while X is unobservable. Moreover, L(1) and L(2) are Rr1 and Rr2-
dimensional Lévy processes starting at the origin, respectively. Both of distributions of X and Y depend
on unknown parameter θ ∈ Θ ⊆ Rp, p ≥ 1, which we want to estimate. Let Pθ and Eθ denote the
probability measure corresponding to each θ ∈ Θ and the expectation under Pθ, and let P0 and E0

denotes similar symbols corresponding to the true value θ0 ∈ Θ. For I ⊆ R+, let FX
I := σ[Xt : t ∈ I]∨N,
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FdL
I := σ[Lt −Ls : s, t ∈ I] ∨N and F

X,dL
I := FX

I ∨ FdL
I where N denotes the σ-field generated by all the

P -null sets. Finally, for a Euclidean space E, let B(E) denote the Borel σ-field of subsets of E.
We assume the following three conditions about stochastic structure of our models, and we will later

assume a further one for moment estimation.

A1 (X0, Y0) and (L
(1)
t , L

(2)
t )t∈R+ are mutually independent while X0 and Y0, and L(1) and L(2) may be

correlated, respectively.

A2 Under P0, X is strictly stationary and α-mixing, that is,

αX(t) := sup{|P0(A ∩B)− P0(A)P0(B)| : A ∈ FX
[0], B ∈ FX

[t,∞)} → 0

as t tends to infinity.

A3 X satisfies that σ[Xt] ⊆ FX
[s−ε,s] ∨ FdL

[s,t] for some ε ≥ 0 and any s and t such that 0 ≤ s ≤ t. For
this ε and any s and t such that ε ≥ 0, s, t ∈ R+, it is assumed that there exists a nonrandom
functional F (not depending on the time) such that Yt − Ys = F (X[s−ε,s], Lu − Lv; s ≤ u, v ≤ t).
Moreover, the initial process (Xt)t∈[−ε,0] is independent of L.

Under above assumptions, we shall define a discrete time observable process y from Y by

yj = Yj∆ − Y(j−1)∆, j ∈ Z∗
+ (1)

where ∆ > 0 is a fixed deterministic sampling interval and Z∗
+ = {1, 2, . . .}. Our estimators will be

represented in terms of n data {yj : j = 1, 2, . . . , n}.

A typical non-delayed (i.e. ε = 0) example is a strong solution of a system of stochastic differential
equations {

dXt = VX(Xt, θ)dL
(1)
t , X0 = x0,

dYt = VY (Xt, θ)dL
(2)
t , Y0 = y0,

where VX : Rd1 ×Θ→ Rd1 ⊗Rr1 and VY : Rd1 ×Θ→ Rd2 ⊗Rr2 are non-anticipative functionals. Apart
from diffusion models, the Ornstein-Uhlenbeck type process is an example for X with a view toward
concrete statistical application to finance, see a recent stimulating work Barndorff-Nielsen [2]. Masuda
[18] investigated mixing property for those processes.

Remark 1. The time index set R+ may be N since a discrete time processes X = (Xn)n∈N can be
embedded into a corresponding continuous time process X = (Xt)t∈R+ with Xt = X[t]. A1, A2 and
A3 are then modified by an obvious way. In discrete time framework, we do not have to consider the
construction (1) of y. We will assume that y is just a observed process. For example, consider a simple
discrete Kalman-Bucy filter model: {

Xn = φXn−1 + ξn

yn = ψXn + ηn

where φ and ψ are unknown parameters taking values in R appropriately, and ξ = (ξj)j∈Z∗
+
and

η = (ηj)j∈Z∗
+
are any independent and identically distributed random variables which may be mutu-

ally correlated. �

3 Inherited strict stationarity and mixing property

The key feature of our model is that y inherits ergodicity from X under our assumptions. This is the
essential property for our purpose. Namely, based on this fact, we can apply classical limit theorems in
the next section under an additional assumption A4 below.
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Theorem 1 (Masuda[17], submitted).
Under A1∼A3, y = (yj)j∈Z∗

+
y is strict stationary and α-mixing satisfying

αy(k) ≤ 4αX

(
(k − 1)∆− 2ε) (2)

for k ∈ {u ∈ Z∗
+ : (k − 1)∆− 2ε ≥ 0}, where αy(·) denotes the α-mixing coefficient of y.

Since α-mixing means ergodicity for strictly stationary stochastic processes, Theorem 1 indeed asserts
that y inherits ergodicity from X .

4 Applying classical limit theorems for estimating functions

4.1 Limit theorems

Following Theorem 1, we can adapt classical limit theorems for a function of observations {yj : j =
1, 2, . . . , n} with the same spirit to GJL. They are well-known Birkhoff’s ergodic theorem and a central
limit theorem for mixing processes.
Here we introduce some notations. Let f : Rmd2 → Rp be an estimating function where 1 ≤

m ≤ n. We will write f = (f1, f2, . . . , fp) so that fj : Rmd2 → R. For such fjs, define a matrix
Σ = [Σ(fk, fl;m)]1≤k,l≤p with

Σ(fk, fl;m) := Cov0[fk(y1, . . . , ym), fl(y1, . . . , ym)]

+
∞∑

j=1

{
Cov0[fk(y1, . . . , ym), fl(yj+1, . . . , yj+m)]

+ Cov0[fk(yj+1, . . . , yj+m), fl(y1, . . . , ym)]
}
. (3)

We need a further assumption which is mainly necessary for the mixing central limit theorem:

A4. There exists a constant δ > 0 such that E0[|f |2+δ] < ∞ and
∑∞

k=1 αX(k)δ/(δ+2) < ∞.
Remark 2. Under the additional assumption A4, Σ is well-defined. �

Remark 3. Suppose that y is one-dimensional. Then a typical case for fj is of polynomial type like

f(yj+1, . . . , yj+m) = yk1
j+1 · · · ykm

j+m, ki ∈ N.

We will not pursue the question of ”which type of estimators is best in the sense of minimizing asymptotic
variances?”. However, these polynomial types are natural choices in terms of computational tractability.
�

The limit theorems on our focus are as follows.

Theorem 2 (Ergodic theorem). Assume that A1∼A4 hold. Then we have

1
n

n−m+1∑
j=1

f(yj, yj+1, . . . , yj+m−1)
P0−a.s.−−−−−→ E0[f(y1, y2, . . . , ym)] (4)

as n tends to infinity.

Theorem 3 (Central limit theorem). Assume that A1∼A4 hold. If Σ is positive-definite, we have

1√
n

n−m+1∑
j=1

{
f(yj, . . . , yj+m−1)− E0[f(y1, . . . , ym)]

} P0−weakly−−−−−−−→ Np(0,Σ). (5)

as n tends to infinity where Np(0,Σ) denotes p-dimensional normal distribution with a mean vector 0
and a covariance matrix Σ.

See, e.g., Durrett [6] for proofs.
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4.2 Construction of moment estimators

The limit in (4) for each f is a function of the true parameter θ0. Then, in terms of Theorem 2 and
Theorem 3, we can construct strong consistent and asymptotically normal estimating functions based on
{yj : j = 1, . . . , n} according to the moment method.
Define two functions Pnf : Rnd2 → Rp and H : Θ→ Rp as follows:

(Pnf)(·, . . . , ·) =
1
n

n−m+1∑
j=1

f(·, . . . , ·), (6)

H(θ) = Eθ[f(y1, . . . , ym)]. (7)

Henceforth we omit (y1, . . . , yn) of a random variable (Pnf)(y1, . . . , yn).

For a large n, moment estimator is defined as a solution of

Pnf = H(θ̂n) (8)

When one solve a system of equations (8) with respect to each component of θ̂n, there is a possibility such
that several solutions exist per each component. Thus, in general, it is inevitable to be accompanied by
non-identifiability. But there are cases where it does not emerge or affect. We will consider such concrete
examples later.
Apart from non-identifiability, here we concentrate on the case where θ̂n is determined uniquely. In

this case, of course, we need some additional regularity conditions. If H is one-to-one on some domain
Θ ⊆ Θ such that θ0 ∈ Θ, then θ̂n is uniquely determined by (8), that is, θ̂n = H−1(Pnf).

Theorem 4. Let A1∼A4 hold, Θ ⊆ Θ be open and θ0 ∈ Θ. Furthermore, assume that H satisfies
followings.

1. H is one-to-one on Θ.

2. H is continuously differentiable at θ0 ∈ Θ.
3. H has a nonsingular derivative at θ0, that is, det

(
d
dθH(θ)

)∣∣
θ=θ0

�= 0 where, for a matrix A, det(A)
denotes the determinant of A.

Then, a moment estimator θ̂n uniquely exists with a probability tending to 1, and for each θ0,

√
n(θ̂n − θ0)

P0−weakly−−−−−−−→ Np

(
0, (H ′(θ0)−1)Σ(H ′(θ0)−1)T

)
(9)

as n tends to infinity, where ′ and T denotes a differentiation with respect to θ and matrix transposition,
respectively.

By Theorem 4, if A1∼A4 holds true and H is invertible, then Pnϕ is a consistent and asymptotically
normal estimator for H(θ0).

5 Examples of application

In this section, several concrete examples are presented for concrete study 1. All of stochastic processes
are assumed to be one-dimensional.

5.1 Random trend models with a hidden Gaussian process

Here we consider two continuous-time linear state space model. Two different cases about L(1) and L(2)

are presented.

1The results of numerical experiments will be given in the presentation.

4



5.1.1 Jump type observation noise

Consider the model {
dXt = p(q −Xt)dt+

√
rdWt,

dYt = Xtdt+ dLt

(10)

whereW is an Wiener process and L is a one-dimensional normal inverse Gaussian Lévy motion (NIGLM)
which is independent of W . In this example, X = (Xt)t∈R+ expresses a trend varying along time, and
Y = (Yt)t∈R+ does a noisy observation. Normal inverse Gaussian distributions forms a very flexible class
containing, for example, normal and scaled-Cauchy as a limiting case with respect to parameters. In
general, a NIGLM depends on four parameters (α, β, δ, µ) where α, β, δ and µ has specified meanings,
namely, steepness, degree of asymmetry, scale and location, respectively. These parameters satisfy α ≥ 0,
α2 ≥ β2, δ > 0 and µ ∈ R. See Eberlein [7], Barndorff-Nielsen [1] and their references for more analytic
fact about NIGLMs. Here we assume L = (Lt)t∈R+ is symmetric and centered, that is, β = µ = 0 so that
L1 ∼ NIG(α, 0, δ, 0) where α, δ > 0 and NIG(α, 0, δ, 0) denotes the normal inverse Gaussian distribution
with four parameters (α, 0, δ, 0). In this case, L is a purely discontinuous local martingale (see Jacod
and Shiryaev [13] for this terminology). Furthermore we assume α is a known for simplicity. Then the
unknown parameter is θ = (p, q, r, δ) where all of p, q, r and δ are positive.
A hidden Gaussian Ornstein-Uhlenbeck process X is strictly stationary with stationary distribution

N1

(
q, r/(2p)

)
and mixing with exponentially decreasing α-mixing coefficient. Thus all of A1∼A4 are

satisfied if X0 is distributed as N
(
q, r/(2p)

)
and independent of W and L (Y0 may be any random

variables which satisfies A1). After tedious calculation, we derive the corresponding estimators for θ
based on polynomial type estimating functions f(yj , yj+1, yj+2) = (yj , y

2
j , yjyj+1, yjyj+2) as

q̂n =
1

n∆

n∑
j=1

yj,

p̂n =
1
∆
log
(C1,2

C1,3

)
,

r̂n =
2{C1,2 log(C1,2/C1,3)}3

∆(C1,2 − C1,3)2
,

δ̂n =
α

∆


 1
n

n∑
j=1

y2
j −
( 1
n

n∑
j=1

yj

)2

− 2C3
1,2

(C1,2 − C1,3)2
{
log
(C1,2

C1,3

)
− 1 + C1,3

C1,2

}
where, for k = 1, 2,

C1,k+1 =
1
n

n−k∑
j=1

yjyj+k −
( 1
n

n∑
j=1

yj

)2

.

To estimate α simultaneously using polynomial type estimating functions, we shall use a further estimator
1
n

∑n
j=1 y4

j and compute its limit

E0[y4
1 ] = E0


(∫ ∆

0

Xtdt+ L∆

)4



Although this is relatively complicated, it is also possible to derive the explicit estimators for θ =
(p, q, r, α, δ).
For simulation purpose, let us consider a reduced model from (10) described as{

dXt = −Xtdt+
√
rdWt, X0 = η,

dYt = Xtdt+ dLt, Y0 = 0
(11)
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∆ obs. mean of r̂n s.d. of r̂n mean of α̂n s.d. of α̂n

2.0 50 - - - -
100 1.4200 1.0744 1.1472 16.6568
300 1.4236 0.3065 1.0406 0.2106
500 1.4803 0.2836 1.0786 0.1817

1.0 50 - - - -
100 1.4017 0.7899 1.0802 0.2012
300 1.4503 0.2645 1.0200 0.0468
500 1.4851 0.2068 1.0257 0.0378

0.5 50 1.3372 2.0152 1.1748 0.4589
100 1.3355 1.0415 1.1223 0.1843
300 1.4814 0.3054 1.0576 0.3054
500 1.4835 0.2070 1.0110 0.0296

Table 1: Jump type measurement noise case : Teh values of parameters are (r0, α0) = (1.5, 1.0), δ = 1.0
and X0 = Y0 = 0.0. The symbol − in this table means discarded cases, that is, the cases where estimated
value is negative.

where L1 ∼ NIG(α, 0, δ, 0) with known δ and unknown α. The estimators for (r, α) are as follows.

r̂n =
2

(1− e−∆)2


 1

n− 1
n−1∑
j=1

yjyj+1




α̂n =
δ∆

1
n

∑n
j=1 y2

j − r̂nD
.

Table 1 shows the corresponding simulation result.

5.1.2 Two correlated Wiener processes

Next let us consider a case where L(1) and L(2) are correlated Wiener processes. The model is the
following. {

dXt = (q −Xt)dt+ dWt,

dYt = Xtdt+
√
σdBt

(12)

where two Wiener processes W and B have a known correlated coefficient ρ and the unknown parameter
is θ = (q, σ) ∈ R × (0,∞). In this case, X is a Gaussian of the form

Xt = X0e
−t + q(1− e−t) +

∫ t

0

e−(t−s)dWs

with a stationary distribution N(q, 1/2). Corresponding polynomial type estimating equations are as
follows.

1
n

n∑
j=1

yj = q̂n∆

1
n

n∑
j=1

y2
j = q̂2

n∆
2 + σ̂n∆+ (∆+ e−∆ − 1)(1 + 2ρ

√
σ̂n)
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∆ obs. mean of q̂n s.d. of q̂n mean of σ̂n s.d. of σ̂n

2.0 50 0.0060 0.0386 1.8550 0.2968
100 0.0034 0.0209 1.9637 0.1398
200 0.0236 0.0109 1.9884 0.0967

1.0 50 0.0540 0.1084 1.9567 0.2750
100 0.0318 0.0421 1.9340 0.1446
200 -0.0096 0.0198 1.9864 0.0749

0.5 50 -0.0803 0.1704 1.9276 0.2279
100 0.0235 0.0844 1.9236 0.1164
200 0.0124 0.0393 1.9880 0.0552

Table 2: The two correlated Wiener case : values of parameters are (q0, σ0) = (0.0, 2.0), ρ = 0.5 and
X0 = Y0 = 0.0.

Note that, although a σ̂n has two solutions, it is uniquely determined by the restriction σ > 0. Then we
can derive estimators for q and σ as

q̂n =
1

n∆

n∑
j=1

yj (13)

σ̂n =
1
∆2


−ρD +

√√√√ρ2D −∆D − q̂2
n∆3 +

∆
n

n∑
j=1

y2
j




2

(14)

where D := ∆ + e−∆ − 1. It follows that moment estimators are affected by a correlation among L(1)

and L(2) in this case. Table 2 shows the simulation result for this model.

More generally, we can construct estimators while reserving unknown parameters contained in L in
the following model {

dXt = V0(Xt, θ)dt+ V (Xt, θ)dWt

dYt = S(Xt, θ)dt+ dLt

(15)

where all of X , Y , W and L are one-dimensional, W is an Wiener process, L is a Lévy process whose
distribution contains unknown parameters and W and L are independent. Namely, we can regard the
parameters contained in L as nuisance parameters. Of course, y = (yj)j∈Z∗

+
is of (1). Define two functions

K : Rl → R and K∗ : Rl → R as

K(u1, . . . , ul) = i−l ∂l

∂u1 · · ·∂ul

{
logE0

[
exp
(
i

s∑
j=1

(u1+lj−1 + · · ·+ ulj)ytj

)]}
(16)

and

K∗(u1, . . . , ul) = i−l ∂l

∂u1 · · · ∂ul
logE0

[
exp
(
i

s∑
j=1

(u1+lj−1 + · · ·+ ulj)
∫ tj∆

(tj−1)∆

S0(Xt, θ)dt
)]

(17)

where
∑s

j=1 lj = l, l0 = 0 and lj , 1 ≤ j ≤ s, are positive integers. Then, we have the following statement.

Lemma 1 (Masuda[17], submitted).
If the model is of the form (15), then we have K(u1, . . . , ul) = K∗(u1, . . . , ul) for any (u1, . . . , ul) ∈ Rl.

Based on Lemma 1, we can do systematic partial estimation for the model (15) in the sense stated
above by considering K(0, . . . , 0). For example, in the case of l = 2, 3, lj = 1 for all j ≥ 1, and tj = j,
we have

K(0, 0) = E0[y1y2]− E0[y1]E0[y2]
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and

K(0, 0, 0) = E0[y1y2y3]− 2E0[y1y2]E0[y1]− E0[y1y3]E0[y1] + 2(E0[y1])3.

Recalling original empirical convergent sequences, it follows that

1
n

n−1∑
j=1

yjyj+1 −
( 1
n

n∑
j=1

y2
j

)2

and

1
n

n−2∑
j=1

yjyj+1yj+2 −
{
2
( 1
n

n−1∑
j=1

yjyj+1

)
+
( 1
n

n−2∑
j=1

yjyj+2

)}( 1
n

n∑
j=1

yj

)
+ 2
( 1
n

n∑
j=1

yj

)3

are estimators for

E0

[( ∫ ∆

0

S0(Xt, θ)dt
)( ∫ 2∆

∆

S0(Xt, θ)dt
)]

− (∆E0[S0(X0, θ)])2

and

E0

[( ∫ ∆

0

S0(Xt, θ)dt
)(∫ 2∆

∆

S0(Xt, θ)dt
)(∫ 3∆

2∆

S0(Xt, θ)dt
)]

− 2∆E0[S0(X0, θ)]E0

[( ∫ ∆

0

S0(Xt, θ)dt
)( ∫ 2∆

∆

S0(Xt, θ)dt
)]

−∆E0[S0(X0, θ)]E0

[(∫ ∆

0

S0(Xt, θ)dt
)(∫ 3∆

2∆

S0(Xt, θ)dt
)]
+ 2(∆E0[S0(X0, θ)])3

respectively.

5.2 Stochastic volatility models

Here we consider an example in which, when L(1) and L(2) are correlated, explicit expressions for esti-
mating functions are not available while the ergodicity of X is theoretically inherited.
GJL [10] gave an example of a simple stochastic volatility model{

dXt = p(q −Xt)dt+
√
rXtdWt, X0 = η,

dYt =
√
XtdBt, Y0 = 0.

(18)

where W = (Wt)t∈R+ and B = (Bt)t∈R+ are independent Wiener processes, and η is an almost sure
positive random variable whose distribution (under P0) is the stationary one of one-dimensional hidden
diffusion X . X = (Xt)t∈R+ and Y = (Yt)t∈R+ are a squared volatility process and a log-asset price
process, respectively. The unknown parameter is θ = (p, q, r) with 2pq ≥ r > 0 so that Xt stays positive
almost surely. In this example, X has an α-mixing coefficient which decays exponentially fast, and a
stationary distribution Γ(2pq/r, 2p/r). Moreover,X has a unique strong solution so that the measurability
condition for X in A3 is satisfied by the definition of strong solutions of stochastic differential equations.
GJL adopted

f(yj , yj+1, yj+2) = (y2
j , y

2
j y

2
j+1, y

4
j ) (19)

for the estimating function f = (f1, f2, f3). Proposition 3.1 of GJL [10] allows us to compute E0[y2
1 ],

E0[y2
1y

2
2] and E0[y4

1 ] explicitly. After that, strongly consistent and asymptotically normal estimators
based on {yj; j = 1, 2, . . . , n} are derived by (possibly numerically) solving three estimating equations
associated with (19).
Next, using the model (18), let us consider a case where W and B are correlated as Bt = ρWt +√
1− ρ2W̃t where ρ is a correlation coefficient and W̃ is a Wiener process which is independent of
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W . Although our argument can be theoretically applied to this case, explicit expression for some of
corresponding estimating equations are not valid apart from the independent case, according to correlation
between W and B. For example, we have

E0[y4
1 ] = 3

{
q2∆2 +

2V ar0[X0]
p2

(e−p∆ + p∆− 1)
}
+ 12ρ2

∫ ∆

0

E0

[
Xs

(∫ s

0

MudMu

)]
ds (20)

where Mu :=
∫ u

0

√
XvdWv. The explicit expression of second term of (20) in terms of θ and data seems

impossible by straightforward way.
However, it is possible according to the Burkholder-Gundy-Davis’s inequality to give the useful crite-

rion for the first condition in A4 with the same spirit to Proposition 2.3 in GJL even in the case where
W and B is correlated.

Lemma 2. Assume (18) for the structure of the model. Suppose that there exists positive finite constants
C and r with r ≥ 1 such that

|f(y1, y2, . . . , ym)| ≤ C


1 + m∑

j=1

|yj |r

 . (21)

Then, if it holds that

E0[X
r(1+δ/2)
0 ] < ∞ (22)

for some δ > 0, then (21) holds true for that δ.

References

[1] Barndorff-Nielsen, O.E. (1998): Processes of Normal inverse Gaussian type. Finance and Stochastics.
2, 41-68.

[2] Barndorff-Nielsen, O.E. and Shephard, N. (2001): Non-Gaussian OU based models and some of their
uses in financial economics (with discussion). Journal of the Royal Statistical Society, Series B 63,
167-241.

[3] Bibby, M. and Sørensen, M. (1995): Martingale estimation functions for discretely observed diffusion
processes. Bernoulli, 1, (1), 17-39.

[4] Bickel, P.J., Ritov, Y. and Rydén, T. (1998): Asymptotic normality of the maximum-likelihood
estimator for general hidden Markov models. Ann. Statist. 26 , no.4, 1614-1635.

[5] Doukhan, P. (1994): Mixing. Properties and examples. Lecture Notes in Statistics, 85. Springer-
Verlag, New York.

[6] Durrett, R. (1996): Probability: theory and examples. Second edition. Duxbury Press.

[7] Eberlein, E. (1999): Application of generalized hyperbolic Lévy motions to finance. in“ Levy Pro-
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