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Abstract

This paper develops a Markov chain Monte Carlo method for Bayesian inferences about a
linear regression model with a two-piece-normal-distributed error term, or two-piece normal
regression model for short. The two-piece normal distribution is a generalization of the
normal distribution. Its advantage over the normal distribution is that it is asymmetric
and thick-tailed, but more tractable than gamma-type distributions. We describe how to
analyze the two-piece normal regression model with a Markov chain Monte Carlo technique
and show a few examples of applications to a stochastic frontier model for the illustration

of this technique.
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1 Introduction

According to Kimber (1985), the two-piece normal (TPN) distribution or jointed half-Gaussian

distribution has been used in ion-implantation research and other related area. The pdf of a
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where ¢(-) is the pdf of the standard normal distribution. In Figure 1, several TPN distributions

TPN distribution is

with different o (o7 is set to be unity) are plotted. Statistical properties of the TPN distribution
were studied by John (1982) and Kimber (1985). Some of them are summarized in Appendix
A. One important property of the TPN distribution is that it is asymmetric when oy # oy; it

is skewed to the left if o1 > o9 and skewed to the right if oy < 3. The TPN distribution is



also thick-tailed, i.e., its kurtosis is more than 3. Since the TPN distribution becomes a normal
distribution when oy = o3, it is regarded as a generalization of the normal distribution.
Although the TPN distribution is rarely applied in econometrics, a similar jointed half

normal distribution was considered by Aigner et al. (1976):
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where z ~ 1.1.d.M(0,1) and 0 < # < 1. This distribution (2) is not symmetric around zero,

if 2 > 0,

but Pr(e < 0) = Pr(e > 0) = 1/2 by construction. Thus on average positive observations are
realized as often as non-positive observations. Furthermore the pdf of (2) is discontinuous at
zero. For the TPN distribution, on the other hand, when a =0, Pr(e < 0) = 01/(01 4 032) and
Pr(e > 0) = 02/(01 4 02). Hence it is possible that positive observations are more likely or less
likely to be realized than non-positive ones for the TPN distribution. Moreover the pdf of the
TPN distribution is continuous everywhere and first-order differentiable at a.

Originally, Aigner et al. (1976) proposed the distribution (2) to estimate a stochastic frontier
model. A stochastic frontier model appears in empirical studies of individual firms with micro
data. In an economic analysis of individual firms, we often encounter functions which represent
optimal values related to activities of firms. For example, a firm’s cost function represents
the minimum level of costs the firm can attain given the level of an output, factor prices, and
technology of production. If a cost function is given as f(x,3) where 3 is a vector of parameters
and x is a vector of factor prices and output level, any observed level of costs y must be
greater than or equal to the theoretical minimum level of costs f(x,3), i.e., y > f(x,3). This
inequality implies that the error term in a regression model of the cost function must be non-
negative. Furthermore it is possible that an observed level of costs y is affected by unobservable
idiosyncratic factors which may have either positive or negative impact on the level of costs.
Hence we have a regression model of the cost function y = f(2,8) + u + v where the first error
term u must be non-negative while the second error term v can be either positive or negative.
This model is often called a stochastic frontier model.

Application of a stochastic frontier model is not limited in a cost analysis of firms. If we
regard f(x,3) as a firm’s production function, f(x,3) gives the maximum level of output given
quantities of inputs @. This is another type of a stochastic frontier model. For a stochastic

frontier model of production, the first error term u must be non-positive so that it would



represent some inefficiency in the firm’s production process. We can also apply a stochastic
frontier model to estimate a firm’s profit function. The model specification of a stochastic
frontier model of profit is basically the same as a stochastic frontier model of production.

In many applications of stochastic frontier models, the frontier function, f(x,3), is supposed
to be linear, i.e., f(x,3) = ’/8. The second error term v is supposed to be normal in most
cases. The distribution of u is supposed to a half-normal distribution or exponential distribution
[Aigner et al. (1977)], truncated normal distribution [Stevenson (1980)], gamma distribution
[Greene (1990)], and so forth. If we combine two error terms u and v into one error term
€ = u + v, the distribution of € is not symmetric around zero. € must be skewed to the right in
a cost function while it must be skewed to the left in a production or profit function. Aigner et
al. (1976) argued that the distribution (2) could be suitable for such e. In this paper, instead
of (2), we propose to use the TPN distribution for € to estimate a stochastic frontier model.

A difficult part of estimating a stochastic frontier model with a TPN-distributed error term is
that the likelihood function of the model is neither continuous nor globally concave with respect
to the regression coeflicients 3. This discontinuity prevents us from using a gradient method to
compute the maximum likelihood estimates. In this paper, we consider a Bayesian approach to
the TPN distribution instead. In a Bayesian approach, we need to evaluate multiple integrals in
calculating posterior statistics such as means, medians, and variances of parameters, computing
credible or highest posterior density intervals, and marginalizing the joint posterior distribution.
For the TPN distribution, closed-form expressions of those integrals are not available and we
must evaluate them numerically. To do so, we apply a Markov chain Monte Carlo (MCMC)
method which is a Monte Carlo integration method coupled with a Markov chain sampling
from the posterior distribution. Research on the MCMC method has been rapidly expanding
for recent years and various MCMC algorithms have been developed in the literature. See
Robert and Casella (1999) and Chen et al. (2000) among others for full details on the MCMC.
In out study, we found that a Gibbs sampler coupled with a Hit-and-Run (H&R) algorithm
worked fine for the model of the TPN distribution.

There is another Bayesian approach to the stochastic frontier model in which one attempts
to estimate u for individual firms. Broeck et al. (1994) applies a importance sampling method
to estimate uw while Koop et al. (1997) uses a Gibbs sampler for the same estimation. Their
approach and ours are complementary to each other. In their approach individual « can be
estimated, which is the major advantage of theirs, but it is assumed that all firms are inefficient

at some degree and the function f(«,3) is indeed a frontier. In our approach, on the other hand,



we do not necessarily assume a priori that f(x,3) is a frontier. Instead, we can test whether
f(x,B) can be interpreted as a frontier or not by examining the shape of the distribution of the
error term.

Organization of the paper is as follows. In Section 2, we introduce a linear regression
model with a TPN-distributed error term. In Section 3, we explain outlines of a Bayesian
analysis of the model and describe a Markov chain Monte Carlo method for to the model. In
Section 4, a numerical example with simulated data, and applications to a cost function of the
electric utility industry and a production function of the transportation equipment industry are

presented. Concluding remarks are given in Section 5.

2 The Model

Reparameterizing (o1,03) — (w,7v) as v = 01/(01 + 02) and w = o1 + 03, the pdf of a TPN

distribution is rewritten as
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In this paper, TPN (a,w, ) denotes a TPN distribution (3). The threshold value « is regarded
as a location parameter since with a transformation € — € + d, it is transformed as a« — « + d.
With a transformation € — ce, w is transformed as w — cw. Thus w is regarded as a scale
parameter. Therefore if € is transformed as ¢ — ce 4+ d, the distribution TPN (o, w,7) is
transformed into TPN (ca + d, cw, ). In particular, if the transformation is € — (¢ — a)/w,
the new distribution is 7PN (0,1, 7). Note that v is invariant under this transformation. This
property will turn out to be useful later when we analyze a model of the TPN distribution. =,
the ratio of o1 to the sum of oy and o9, is regarded as a “shape” parameter. A TPN distribution
is skewed to the left when v > 1/2 while it is skewed to the right when v < 1/2. If v = 1/2,
the distribution is symmetric around o and becomes a normal distribution A («,w?/4). v also
gives the probability that € is less than or equal to a. Thus values less than or equal to (more
than) o are more likely to be observed if v > 1/2 (y < 1/2). This property is an advantage
over the asymmetric distribution (2) proposed by Aigner et al. (1976) whose median is always
equal to the threshold value.

In our study, we will focus our attention on the case that f(x,3) is linear. So let us consider



a linear regression model with a TPN-distributed error term:
yi=a+zB+e, €~iid TPN(0,w,v), (i=1,...,n) (4)

where y; is a scalar value of a dependent variable, @; is a k X 1 vector of independent variables
excluding the constant term, and 3 is a k x 1 vector of regression coeflicients. In this paper, we
refer (4) as a two-piece normal regression model (TPNRM).

To understand the nature of the TPNRM, let us consider the conditional distribution of y;

given x;. The conditional distribution of y; is also a TPN distribution and its pdf is given as
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One important feature of the TPNRM is that, unlike the classical regression model, the re-
gression function « + @/B gives the mode of the conditional distribution (5), instead of the
conditional expected value E(y;|@;). Therefore the ordinary least squares estimator (OLSE) of
3 is biased and not consistent.

Another notable feature of the TPNRM is that the shape parameter v determines whether
our interpretation of the TPNRM is suitable or not. To explain this, let us consider a simple
regression case in which the regression function is a straight line. If v < 1/2, values above the
regression line are more likely to be observed those below the regression line. This is illustrated
in Figure 2. In Figure 2, we plot data generated by a simple regression model with a TPN-

distributed error term:

yi=oa+ pr;+e, € ~iid. TPN(0,w,7).

We set @« = 3 =1 and v = 0.2. We set w = 2/\/y(1 —7)+ (1 — 27~ 1)(1 — 2v)2 ~ 3.7087
to make Var(¢;) equal to 4. z; is generated from U(—+/3,/3), and the number of observation
is n = 200. The straight line in Figure 2 represents the regression line o + fz. Obviously,
the majority of observations are located above the regression line. In such a case, it may be
acceptable to interpret the TPNRM as a cost function since the distribution of the error term
in a stochastic cost frontier model is supposed to be skewed to the right and as a result more
residuals are expected to be located above the regression line. If v > 1/2; on the other hand,
values below the regression line are more likely to be observed. Since a left-skewed distribution

of the error term is not consistent with the nature of a stochastic cost frontier model, it is not



reasonable to assume that the regression line represent a cost function when v > 1/2. However,
when we estimate a stochastic production frontier model, ¥ must be more than 1/2 in order to
interpret the regression line as a production function. Therefore whether v is more than 1/2 or
less than 1/2 is crucial in an analysis of a stochastic frontier model, and we may use this feature
to check validity of model specification of the TPNRM. For example, if we try to estimate (4) as
a cost function but end up with the estimate of v such that v > 1/2, we might as well suspect
that something is wrong with our model specification of the cost function.
The third important feature of the TPNRM is that the classical normal regression model is
a special case of the TPNRM. Suppose that v = 1/2. Then (5) equals
, /
flule) = 20 (1222 52), )

and the TPNRM (4) becomes
yi=a+z 8+ %zi, z ~ 1.1.d. (0, 1). (7)

This is the classical normal regression model. Since the classical normal regression model is
nested in the TPNRM, we may test assumption of the classical normal regression model against
the TPNRM by checking how ~ is close to 1/2.

Since the OLSE of the TPNRM is biased and not consistent, we may estimate the model
with the maximum likelihood estimator (MLE). The likelihood function for the TPNRM is
given as

n d; 1-d;
ol sonX) = ST (P50 70) o (P ER) L

where y = [y1,...,u.], X =[@1,...,2,),and d; (¢ =1,...,n) is a dummy variable defined as

17 if Yi S 04‘|’w;'ﬁ7
0, ify; >a+zB.
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Although the likelihood function (8) is continuous with respect to w and =, it is not continuous
with respect to a or 3. This makes it difficult to maximize the likelihood function (8) by a

gradient method. Therefore we propose to analyze the TPNRM in a Bayesian approach instead.

3 Bayesian Inference

Before we proceed to a Bayesian inference about the TPNRM, we briefly describe how to

conduct a Bayesian inference in a general setting. Let 8 a vector of unknown parameters and y



observed data. We suppose that y is generated from the joint distribution p(y|@) which is the
likelihood function in terms of 8. We also suppose that prior information about the parameters
0 is summarized in the form of the prior distribution p(@). Then we construct the posterior
distribution p(@|y) from the prior distribution p(@) and the likelihood function p(y|@) by the

Bayes theorem:

MO0
fQ (y|0)p(0)do

where g is the domain of 8. The posterior distribution p(8|y) is the conditional distribution of

p(ly) =

p(y|0)p(0), (9)

unknown parameters 8 given observed data y. In a Bayesian approach, all inferences about the
parameters @ are based on the posterior distribution. If we want to know a “point estimate” of
0, we may evaluate the expected value of the posterior distribution E(8|y) = fQ 0p(0|y)do. 1If
our purpose of the analysis is to determine the probability Pr(8 € Rg) where Ry is some region
of 8, the probability is computed as Pr(0 € Rg) = fR (6ly)de.

Let us derive the posterior distribution for the TPNRM. First, we rewrite the likelihood

function as

1 €2 €2
p(y|oe,ﬂ,w,'y,X) xw " exp [_— {Zdl_zl + Zdl_o }] 9 (10)
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where ¢; = y; — o — /3. As the prior distribution, we consider the following conjugate-type

prior:

pla,B,w,v) o« plaw)p(Blw)p(w)p(y)

_ 2
X exp [_W] X exp [—%(ﬂ — M@)/Tﬁ(ﬁ - ,Uﬁ)

(a be
Xw ( “’+1)exp <_ﬁ> 1(W>0) X 1(0<W<1)7 (11)

where (to, 7o, g, Tg, au,b,) are hyper-parameters. In principle, researchers can choose any
values for the hyper-parameters as long as they represent their prior information on parameters
in the model. Sometimes we want to make the prior distribution “less informative” in the sense
that information from data y dominates the prior information. In such a case, we may set

7o =0, Tg — 0, a, =0, and b, — 0, which leads to

pla, B,w,7) x w ' 150 Liocq<t)- (12)

This is a kind of non-informative prior, and often used in a Bayesian inference. Since this non-

informative prior is improper (the integration is not equal to unity), the posterior distribution



would be improper, too. For this reason, we stick to the proper prior (11) in out study. By the

Bayes theorem the posterior distribution is given as

pla,B,w,v|D) < plyla, B,w,v, X)pla, B,w,7)

—(n+a 52 —I_ bw
o W (nt+aw+1) exp (— 22 )1(W>0)1(0<W<1)7 (13)

where D = (y, X)) and

2 2
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In a Bayesian inference, we are required to evaluate multiple integrals such as er 0p(0|y)do

and fRe p(0|y)d@. However, there are no closed-form expressions of these integrals available for
the posterior distribution (13). Instead, we try to evaluate them by a Monte Carlo integration
method. Let f(#) a function we want to integrate. For example, to evaluate the expected
value of the posterior distribution, we set f(@) = 6. Then a Monte Carlo integration method

approximates an integral of f(8) with its sample analog, i.e.,

M
|, r@welvio~ 53 rio") (14)

where 61 (r=1,...,M) is a sample of @ generated from the posterior distribution p(8|y).
Under regularity conditions, the sample analog will converges to the true integral by the law
of large numbers as M — o0o. To compute the sample analog, we need to generate a sample of
parameters from the posterior distribution. In our study, we apply a Markov chain sampling
method, in particular a Gibbs sampler, to generate them.

To begin with, we explain a Gibbs sampler for a general distribution. Suppose that 8 is a
vector of m random variables and ¢(0) is the joint pdf of 8. This is the target distribution from

which we want to draw 8. ¢(6;/6_;) denotes the conditional distribution of #; given a set of

the other variables 8_; = (61,...,6;-1,0;41,...,0,). Then a Gibbs sampler is implemented as
follows:
Step 1. set the starting values, 0§0), .. .,07(79).

Step 2. draw §; from its conditional distribution for r =1,2,3,...

o) g(ay)o Y 00 ey,

o) g(ay)6\) 00T gty

00 — g(6,167,65) ... 00 .

m



Step 3. repeat Step 2. until the draws become stable.

Under regularity conditions, the joint distribution of (OY), oo, 0 r)) will converge to ¢(6).
In the case of the TPNRM, the parameter vector @ is [a, 3, w,~] and the target distribution

is the posterior distribution p(«a, 3,w,v|D). In our study, the order of drawings is w — v —

o — (3. Thus the Gibbs sampler for the TPNRM are given as follows:
Step 1. set the starting values, a(?), ﬂ(o), w©) and (),

Step 2. draw parameters from their conditional posterior distributions for r = 1,2,3, ...

e plolal=h, gD 5071 D),
Y p(ylalrD, g1 ) Dy
A p(alBD, o) 40 D),
B0 p(Bla, W) 40 D)

Step 3. repeat Step 2. until the draws become stable.

In Appendix B, we discuss how to draw parameters from their conditional posterior distributions
in details.

One thing we must mention here is that we cannot simultaneously draw 3 from its conditional
posterior distribution. We may draw 31 to fj once at a time, but it is well-known in the literature
that drawing regression coeflicients one by one from their conditional posterior distributions
tends to make a Gibbs sampler converge slower and it is preferable to avoid such a approach if
possible. Instead, we apply a Hit-and-Run (H&R) algorithm to draw 3. See Chen et al. (2000)
among others for more information about the H&R algorithm. A H&R algorithm for 3 is as

follows:
Step 1. set the starting value of 3, ﬂ(o).

Step 2. generate a k X 1 vector S(T) = [fy), .. .,E,(:)]’ from a distribution on the surface of

k-dimensional unit sphere. For example, we may generate S(T) by

i —1/2
& =2 (Zzz) oz~ LA N(0,1), (Gih=1,....k). (15)

h=1
Step 3. generate a random scale A\(") from a distribution g()\|ﬁ(7’)7 6(7’)).

Step 4. set B = ﬁ(r) + )\(7’)6(7’).



Step 5. set
B with probability a(8|8");

Bl —
ﬁ(r) otherwise.

Obviously, a H&R algorithm is a special case of the Metropolis-Hastings algorithm, and using
a H&R algorithm inside a Gibbs sampler makes it a so-called hybrid MCMC or Metropolis-
within-Gibbs algorithm. The convergence to the posterior distribution is still guaranteed for a
hybrid MCMC algorithm.

One convenient property of the H&R algorithm is that we can set the acceptance probability
a(fﬂﬁ(r)) equal to one if we use

(B + X0, w, v, D)

)\ (7’)7 (7’) =
gIBT e Jo, p(B7) + €W, w, v, D)d¢

: (16)

where Q) is the domain of A given (8, £(")). We use this distribution of A (16) in out study.
Derivation of (16) is also explained in Appendix B.
4 Applications

4.1 Simulated data

We consider a TPNRM:

yi = o+ Brag + Bexin + Psxis + ¢, € ~iid. TPN(0,w,7).

Weset =01 =08=03=1,7v=02,and w=2//y(1—7) + (1 =27~ 1)(1 — 27)2 ~ 3.7087.

We generate x; = [2;1, 22, ;3] from

o 0 1 0.9 0.9
T | ~iLd N 01,109 1 0.9
T3 0 0.9 0.9 1

The number of observation is n = 200. The hyper-parameters are as follows: p, = 0, 7, = 0.001,
pg = [0,0,0), Tg = 0.001 x I3, a, = 0.001, and b, = 0.001. In the Gibbs sampler, we first
generate 2,000 draws and discard them as burn-in. Then we generate 10,000 draws and use
them for a Bayesian inference of the TPNRM. The results are shown in Table 1. The marginal
posterior distribution of v is plotted in Figure 3.

Apparently, the OLSE’s of the parameters are biased except for #;. The marginal posterior

distribution of v is tightly distributed around 0.2, the true value of .



4.2 Cost function of the electric utility industry

Greene (1990) provides data for estimation of a cost function of the U.S. electric utility industry.

Greene (1990) uses the following specification of a cost function:

In(Cost/P;) = v+ By In Q + B2 In* Q + B3 In(Po/ Py) 4 Baln(Py/Py) + e, (17)

where () is the output, P, Py, and P are the prices of labor, capital, and fuel respectively. To
stabilize the Gibbs sampler, we use standardized data for estimation. Then generated draws
of parameters are transformed back into the original parameterization. The Gibbs sampler is
implemented in the same manner as the previous example. The results are reported in Table 2.
The marginal posterior distribution of v is plotted in Figure 4.

The OLSE’s and posterior means or medians of the parameters are not so much different.
The marginal posterior distribution of 7 is distributed around 0.5. The probability of v < 1/2 s
about 62%. Thus we cannot support the assumption that there is some inefficiency in the cost
function of the electric utility industry. Of course, this result relies on the model specification.

So it may suggest that we might as well reconsider the specification of the cost function.

4.3 Production function of the transportation equipment industry

Zellner and Revankar (1969) provides data for estimation of a production function of the U.S.
transportation equipment industry. Greene (2000, p.396) uses the data to estimate a stochastic

production frontier model. The production function is Cobb-Douglas!:
InV=a+8InK+75InlL+e, (18)

where V is the aggregated value added, K is the aggregated capital service flow, and L is the
aggregated person-hours worked. The Gibbs sampler is implemented in the same manner. The
results are reported in Table 3. The marginal posterior distribution of 7 is plotted in Figure 5.

In Table 3, the estimates of the constant term « and the coefficient for capital 3; is slightly
larger in the TPNRM than in the classical normal regression model. The estimated coefficient
for labor fs is slightly smaller in the TPNRM. This pattern also appears for the half-normal
and exponential stochastic frontier models in Table 9.1 of Greene (2000, p.396). The marginal
posterior distribution of v is distributed around 0.5, and the probability of v > 1/2 is about 66%.

!Zellner and Revankar (1969) proposed an alternative functional form for a production function other than
Cobb-Douglas. But we use a Cobb-Douglas function as Greene (2000) did since our purpose is merely to illustrate

how the TPN assumption makes differences on the estimates



Thus it is ambiguous whether there are any inefficiencies in the production of transportation

equipment or we need to redo the model specification.

5 Concluding Remarks

In this paper, we developed a Markov chain Monte Carlo method for Bayesian inference about
a two-piece normal regression model. Our method is based on a Gibbs sampler and uses a
Hit-and-Run algorithm to generate regression coefficients. For the purpose of illustration, a
cost function of the electric utility industry and a production function of the transportation

equipment industry as well as a regression model of simulated data are estimated.

Appendix

A Statistical Properties of a TPN Distribution
John (1982) and Kimber (1985) derived the following properties of a TPN distribution:
1. Pr(e<a)=+vand Pr(e >a) =1—1.
2. mode(e) = a.
3. Bl(e—a)"]=7720[(r +1)/2)(vV20)" [(1 = 7)™ = (=) ]
4. E(0) = a + V2 Tw(l — 27).
5. Var(e) =w? [y(1 =) + (1 = 2771 (1 - 29)7].
6. median(e) = a + 7w® L [1/(49)]if v > 1/2; a — (1 — 1)wd L [1/{4(1 — 7)}] otherwise.

7. The TPN distribution is symmetric around a when v = 1/2, skewed to the right when
v < 1/2 and skewed to the left when v > 1/2.

8. lim, 1 V1 = —lim, 0 v/B1 = V2(4 — 1) (7 — 2)7%/2. (\/By is the skewness)
9. 0< By —3<8(m—3)(r —2)72. (B2 is the kurtosis)

As Kimber (1985) points out, a TPN distribution is regarded as a mixture of two half normal

distributions,

) = Pr(e < a)f(ele < a) + Pr(e > a) f(ele > a)
(e o e ()]




and TPN random numbers can be generated by the following procedure:
Step 1. generate z ~ N (0, 1).
Step 2. generate u ~ (0, 1).

Step 3. draw ¢ from
a-qwll  ifu<o,

a+ (1 —ywlz| if u>~.
B Posterior Simulation of Parameters in the TPNRM

B.1 Conditional posterior distribution of w

Given a, B, and ~, the conditional posterior density of w is

—(ntau 5%+,
pwla, B,7, D) o w™ (et exp (— 57 )1(w>0)- (19)

This is the kernel of the square-root inverted gamma distribution,

n+ a, Sz—l—bw>

1
D~Ga 2 20
wla, B, 7, Ga™> ( 7 T 5 (20)

The mean and variance of (19) are

Blola By D) = Hypttes it [T 1)

S?+b,
Var(w|a7ﬂ7%D) = m_E(wb‘vﬁvP%D)z' (22)

See Bernardo and Smith (1994, p.119, p.431) for other properties of the square-root inverted

gamma distribution.

B.2 Conditional posterior distribution of v

Given a, B, and w, the conditional posterior density of ~ is

1 Ed,‘:l 622 Zd,‘:O 622
p(7|a7ﬁ7w7 D) X exp [_ﬁ { 72 + (1 _ 7)2 1(0<W<1)7 (23)

which is not a standard distribution. It has the following properties:

1. 1imw—>0p(7|a7ﬁ7w7 D) =0if Edz‘:l 622 7£ 0.

2. hmw—ﬂ p(7|a7ﬁ7w7 D) =0if Zdz‘:O 622 7£ 0.



3. p(yle, B,w, D) is unimodal if 3, _, e? # 0 and > di=0 e? # 0, and

B 62 1/3 -
mode(y) = |1+ (_gj_o e;)
=11

Since the domain of v is bounded (0 < v < 1), we may apply a griddy Gibbs sampler to drawing
w from its conditional posterior distribution. In our study, the following griddy Gibbs sampler

is used to draw v from its conditional conditional distribution:
Step 1. compute p(v|a, 3,w, D) over the grid, 0 =v9 <71 < -+ - < yg-1 < v¢ = L.

Step 2. compute F, = fgg 1p('y|a,ﬁ,w,D)d'y (9 = 1,...,G) with the trapezoidal method.
o
(We set Fy = 0.)

Step 3. generate u ~ U (0, Fz) and find ¢ such that F,_; < u < F.

Step 4. invert u into v by the linear interpolation,

u — Fg—l

ﬁ(% — Yg-1)-

Y =Yg-1+

B.3 Conditional posterior distribution of «

Let us consider u; = y; — a3 (i = 1,...,n) and their order statistics, u() < wz) < -+ < u(y)-
Without the loss of generality, we assume that {u(l), .. .,u(n)} are all distinct. We also assume
u(1) < @ < u(y) since otherwise v and w cannot be identified. Within the interval u,) < a <

U(ht1) (h=1,...,n— 1), the conditional posterior density of « is continuous and expressed as

p(O&|U(h) <« S u(h—|—1)7ﬂ7w777D)

h 2 n 2
 exp [_ﬁ {Zi:l(?fy(;) - a) n Zi:hzrll(_uf;;z— @) 4 (- Iua)z}] Ly <arunen)
Y
X exp [_ %} 1(u(h)<a§u(h+1))7 (24)
where
& = v? Z?ﬂ uy + (1 - SO IED D u() + Ta:“a7
YR RF (1= ) 2= )+ 7o
T o

YA (L=7) 2= h) + 7



(24) is the kernel of a doubly truncated normal distribution with truncating points u(yy and

t(p11)- Therefore the conditional posterior density of « is

1 o — 6&1
I(oza-oz1¢ ( o ) for u(y < a < ),
plelB,w,y, D)= : (25)
1 o — @n—l
K0, n—l(b ( Tt ) for t(n-1) < @ < Ugay,

where K, is the normalizing constant and defined as

n—1 B i

- Uu — u —ay
Ko= Y A@(Bur) = ®(Au)}, Agy = -0 g, = M) 20
h=1

Tah Tah

The conditional posterior distribution of a (25) is regarded as a mixture of the doubly truncated
normal distributions given in (24), and in general it is discontinuous at each u(,y (h =2,...,n—

1). The mixture rate for each component in (25) is

©(Ban) — ®(Aan)

. (26)

¢ah = PI’(U(h) <o« S u(h—|—1)|ﬂ7w7 Y D) =
Therefore we can draw « from its conditional posterior distribution (25) in the following manner:
Step 1. choose an interval u() < o < u(j4q) With probability ¥, in (26).

Step 2. draw « from (24) corresponding to the chosen interval.

B.4 Hit-and-Run algorithm for 3

We draw 3 by a H&R algorithm. First, let us derive the distribution of A (16) for the TPNRM.
To make mathematical expressions concise, we will suppress the superscript '(r)’in the following

derivation. Plugging B = B+ \¢ into the posterior density, we have

(B + Aflw,v, D)
1 [ Saci{vi—a—2(B+ 2 Yi_ofvi—a—2i(B+2))
X exp |[—=— +
72 (1—7)?

<exp |55 (B N - g T8+ A6 — )

1 {Zd,:l {ei — i}’ N S a0 {€i — A} N (A = pn)? H

X exp [—— 72 (1 _ 7)2 TAQ

5,2 (27)

where n; = i€, py = §’T@,u,ﬁ, 7\ = £€'Tg&, and the dummy variable d; is determined by

J 1, ify <28 e e < A,
0, ify > ZIZ;B S e > A



Let v; = e;/n; (i = 1,...,n) and its order statistics v(yy < -+ < v(,). We assume that
{v(l), .. .,v(n)} are all distinct and /€ # 0 for all . We also assume V() = —o0 and v(,41) = o0.
Within the interval v(,_1) < A <oy (h=1,...,n+1), the density of B+ A€ (27) is continuous

with respect to A. Thus if we regard (27) as the density of A, it will be expressed as

I [o(h-1y < A <oy, By §)

1 Zd,‘:l 7722(1]2 - )\)2 Zdl‘:O 7722(1]2 - )\)2 2
oc exp [_ 2002 { ~? + (1-7)? + A=) Lionony<r<ogny)
(A — Xh)Q
X €Xp |:_ 26_/2\h 1(v(h_1)</\§v(h))7 (28)
where
5 YT g o (L= ) T2 o m v+ T
h = ;
2 Zdi:1 772'2 + (1 —7v)72 Zd,:o 772'2 + 7
2
oy = -

2 Zdizl ni 4 (1—v)72 Zdl:o n?+ 7y
(28) is also the kernel of a truncated normal distribution. Therefore the pdf of X, ¢(A|3, &), is

given as 7
1 A—X
I(/\a'A1¢ ( o ) for vy < A < vy,
1 A— j‘n—l—l
fi A<
KO 1 ( Tx\nt1 ) OF V(n) < A S Unt)s

where K is the normalizing constant and defined as

n+1

V1) — A
K\ = Z {®(Byp) — ®(Axn) ), Ay = hoD) TR
h=1

U(r) — j\h
= . By= -
O\h O\h
g(AlB, &) in (29) is also regarded as a mixture of truncated normal distributions in (28) with
the mixture rate,

$(By) — ®(A
¢mEPdwhn<A§WmW£%=( MZ}(AM- (30)

Hence we can draw A from its distribution (29) in the same manner as «. In summary, a H&R

algorithm for generation of 3 is implemented as follows:

Step 1. generate a k x 1 vector £ by (15).
Step 2. choose an interval vg,_;) < A < vy with probability ¢, in (30).
Step 3. draw A from (28) corresponding to the chosen interval.

Step 4. replace 3 with 3 + A&.
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Table 1: A Simulated TPNRM

Posterior Statistics

OLSE Mean  Median 2.5%  97.5%

« 2.7608 1.0066 1.0018 0.5632 1.4862
(0.1381) | (0.2334)

081 0.3108 1.0180 1.0292 0.4314 1.5597
(0.3534) | (0.2846)

bo | 0.8752 0.8520 0.8483 0.4207 1.2862
(0.3463) | (0.2194)

O3 | 1.8103 1.0716 1.0756  0.4548 1.7056
(0.3703) | (0.3109)

w — 3.5205 3.5131 3.1915 3.8943
(0.1819)

0 — 0.1795 0.1771 0.1081 0.2645
(0.0398)

19 1.9408 1.9193 1.9138 1.7293 2.1375
(0.1044)

Notes: Numbers in parentheses are standard errors

for the OLSE and posterior standard deviations for

the Bayesian estimates. o is the standard deviation

of the error term.




Table 2: Cost Function

Posterior Statistics

OLSE Mean  Median  2.5% 97.5%

o | -7.2077 | -7.2092 -7.2064 -7.8987 -6.4996
(0.3372) | (0.3531)

b1 | 0.3858 0.3893 0.3876 0.3135 0.4653
(0.0383) | (0.0397)

bo | 0.0316 0.0315 0.0316  0.0264 0.0365
(0.0027) | (0.0026)

O3 | 0.2470 0.2427 0.2424  0.1124 0.3751
(0.0670) | (0.0674)

84| 0.0784 0.0737 0.0735 -0.0498 0.1962
(0.0617) | (0.0629)

w 0.2922 0.2910 0.2575 0.3331
— | (0.0194)

0 0.4746 0.4736  0.3251 0.6352
— | (0.0806)

19 0.1448 0.1470 0.1465 0.1295 0.1678
(0.0099)

Notes: Numbers in parentheses are standard errors

for the OLSE and posterior standard deviations for

the Bayesian estimates. o is the standard deviation

of the error term.




Table 3: Production Function

Posterior Statistics

OLSE Mean  Median 2.5%  97.5%

o 1.8444 1.9391 1.9260 1.3273 2.6402
(0.2336) | (0.3254)

01| 0.2454 0.2517 0.2525 0.0337 0.4644
(0.1069) | (0.1073)

bo | 0.8052 0.7863 0.7848 0.5296 1.0479
(0.1263) | (0.1331)

w 0.4951 0.4858 0.3669 0.6746
— | (0.0788%)

0 0.5534 0.5492 0.3314 0.8078
— | (0.1202)

19 0.2357 0.2514 0.2466 0.1852 0.3446
(0.0410)

Notes: Numbers in parentheses are standard errors

for the OLSE and posterior standard deviations for

the Bayesian estimates. o is the standard deviation

of the error term.
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Figure 2: TPN Regression Model: y; = 1+ z; 4+ €;, ¢, ~ TPN(0,3.7087,0.2)
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Figure 3: Marginal Posterior Distribution of v (Simulated Data, v = 0.2)
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Figure 4: Marginal Posterior Distribution of v (Cost Function)
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Figure 5: Marginal Posterior Distribution of v (Production Function)




