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Abstract

This paper considers a Bayesian semiparametric approach to gener-

alized nonlinear models, where response variables have an exponential

family density and predictors are assumed to be an unknown function of

covariates. Gaussian process priors are assumed for the unknown func-

tion. To estimate the model, we apply MCMC methods based on a genetic

adaptive Metropolis and a block samplers. Our approach is illustrated by

both simulated and real data.
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1 Introduction

Suppose that we observe the response yi and the associated covariates xi for

the i–th individual and are interested in exploring the relationship between the

responses and the covariates. One of the most popular and useful tools for this

purpose is the linear regression model. In classical linear models it is assumed

that the responses yi are normally distributed and their means are a linear

function of xi, that is,

E(yi|xi) = x′
iβ, (1)

where β is a vector of unknown parameters. As an extension of linear regression

models, Nelder and Wedderburn (1972) proposed generalized linear models (see

also McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1994).

There are certain distributional and structural assumptions associated with

generalized linear models. The responses yi are assumed to have an exponential

family density

p(yi|θi, φ) = exp
{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
, (2)

where θi are the canonical parameters, φ is the dispersion parameter, and a(·),
b(·) and c(·) are some specific functions. It is well known that important special
cases of (2) include a binomial, a Poisson, a normal, a gamma and an inverse

Gaussian distributions. The usual structural assumption is that the expecta-

tions µi = E(yi|xi) are related to the linear predictors ηi = x′
iβ through a link

function g(·) such that
g(µi) = ηi = x′

iβ. (3)

An important particular link, called the canonical link, is obtained when g(µi)

is chosen so that ηi = θi. From these assumptions, many useful models fall into

the class of generalized linear models, including the normal, logit and Poisson

regression models.

Classical inference for generalized linear models relies on maximum likeli-

hood estimation of the parameters and the associated asymptotic distributional

properties of the estimates. On the other hand, Bayesian inference puts prior

distributions on the unknown regression coefficients β and employs Markov chain

Monte Carlo (MCMC) methods to carry out the posterior analysis. See Del-
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laportas and Smith (1993) and Dey et al. (2000) for an overview of Bayesian

generalized linear models.

Though generalized linear models assume that the effect of the covariates is

linear, this assumption may be often too restrictive in applications and needs to

be extended by a nonlinear predictor. In order to relax the linear assumption,

many researchers have proposed semiparametric approaches, where a predictor

is treated as an unknown function of the covariates. Using a smoothing spline

approach, Green and Yandell (1985), O’Sullivan et al. (1986) and Gu (1990)

extended generalized linear models. A local likelihood approach was considered

by Fan et al. (1995) and Carroll et al. (1997). Hastie and Tibshirani (1990) pro-

posed generalized additive models, which were analyzed by Denison et al. (1998)

in a Bayesian semiparametric framework.

A Bayesian semiparametric analysis must be based on a prior distribution

over an unknown function which is an infinite dimensional parameter. In the

Bayesian literature (see, e.g., Dey et al., 1998), Dirichlet process priors intro-

duced by Ferguson (1973) were employed by Müller et al. (1996) and West et

al. (1994) for Gaussian measurement data. Wood and Kohn (1998) applied in-

tegrated Wiener process priors to binary response data. Furthermore, Gaussian

process priors were considered in density estimation (Leonard, 1978), regres-

sion models (O’Hagan, 1978, Neal, 1996), and binary response models (Hsu and

Leonard, 1997, De Oliveira, 2000).

Diggle et al. (1998) and Gutierrez-Peǹa and Smith (1998) also considered

a Bayesian semiparametric approach to extend generalized linear models by

using Gaussian process priors. Since their nonlinear generalized models are

analytically intractable, efficient and computationally straightforward MCMC

methods are desired for posterior inference. This paper considers the generalized

nonlinear model and attempts to develop an efficient simulation algorithm for

sampling the posterior distribution of the parameters. Specifically, we employ a

genetic adaptive Metropolis sampler proposed by Holmes and Mallick (1998b)

and a block sampling technique in order to improve over existing methods for

sampling the posterior distribution.

The rest of the paper is organized as follows. In Section 2 we explain the

model with Gaussian process priors. Section 3 discusses computational strat-
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egy of MCMC methods. In Section 4 our approach is illustrated using both

simulated and real data. Finally, brief conclusions are given in Section 5.

2 Model description

Let us assume that the responses yi (i = 1, . . . , n) are independent with the

probability distribution given by (2), and that the corresponding predictors ηi

are an unknown function of xi = (xi1, . . . , xip)′ expressed as

ηi = f(xi). (4)

As in generalized linear models, the mean responses µi = E(yi|xi) are modeled

as

g(µi) = f(xi), (5)

for some known link function g(·). Since f is an unknown function, the choice

of the link function may not have much effect on posterior inference. Thus, we

simply suppose the canonical link function which is commonly used in practice,

that is, θi = f(xi). It should be mentioned that Gutierrez-Peǹa and Smith

(1998) considered more general distributions for the responses, which contain

the exponential family density as a particular case. However, we are concerned

with semiparametric estimation of the mean responses and confine ourself to

the exponential family density for the responses.

Following the previous work, it is assumed that f(xi) follow a Gaussian

process in the prior assessment. A Gaussian process is a stochastic process

which has a joint multivariate Gaussian distribution for any finite set of points,

and can be fully specified by its mean function

m(xi) = E [f(xi)] , (6)

and its covariance function

C(xi, xj) = E
[(
f(xi)−m(xi))(f(xj)−m(xj)

)]
. (7)

For the mean function, we assume that

m(xi) = mi = β0 + β1xi1 + · · ·+ βpxip = z′iβ, (8)
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where zi = (1, x′
i)

′ and β = (β0, . . . , βp)′. Although only the linear mean func-

tion is considered in this paper, more flexible functions such as polynomials

can be used. Since a Gaussian process converges to its mean function as its

variance goes to zero, the use of the linear mean function makes it possible to

check whether a linear predictor is appropriate or not through estimates of the

variance.

Though we parameterize them in hierarchical form, the predictors ηi can be

equivalently written as

ηi = z′iβ + f0(xi), (9)

where f0(xi) follow a Gaussian process with mean zero. This parameteriza-

tion is employed in Diggle et al. (1998) and Gutierrez-Peǹa and Smith (1998),

but not to be recommended in the context of MCMC methods because of the

poor mixing property (see Gelfand et al., 1996). In addition, as shown in the

next section, our parameterization has an immediate advantage of obtaining the

conditional posterior distribution for β.

There are many choices of covariance functions (see, for example, Cressie,

1993). Diggle et al. (1998) used an isotropic covariance function which depends

only on the distance between xi and xj . However, as argued in Holmes and

Mallick (1998a) and Williams (1998), the use of an isotropic covariance function

may not be appropriate in many applications. Therefore we choose the following

covariance function

C(xi, xj) = Cij = τ0 exp

{
−1
2

p∑
l=1

τl(xil − xjl)2
}

, (10)

where τi (> 0) are unknown parameters (see Neal, 1996). This covariance func-

tion has the length scale parameters τl (l > 0) corresponding to each covariate

which characterize the distance in that particular direction over which f is ex-

pected to vary significantly. For irrelevant covariates, the corresponding τl will

become small, and f is expected to be essentially a constant function of that

covariate. This is closely related to the automatic relevance determination idea

of MacKay (1994) and Neal (1996). The variance τ0 gives the overall scale of

the Gaussian process. Note that our model reduces to a special case of gener-

alized linear mixed effects models considered in Breslow and Clayton (1993) if

Cij = 0 for i �= j. Some features of Gaussian processes are illustrated in Figure
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1, showing some random samples drawn from Gaussian processes with mean

zero. From Figure 1, we can verify the flexibility of Gaussian processes.

To complete the prior specification, we assign a normal distribution to β,

β ∼ N(β0, V0). (11)

Following Neal (1996), it is assumed that the τi’s are independent and

τi ∼ IG(m0i/2, ω0i/2), (12)

where IG(a, b) denotes an inverse gamma distribution with a density propor-

tional to x−(a+1)e−b/x. In the case of a normal distribution, the dispersion

parameter φ = σ2 is assumed to have an inverse gamma prior IG(n0/2, s0/2).

Finally we mention that F = (f(x1), . . . , f(xn))′ has a probability density

π (F |β, τ) ∝ |C|−1/2 exp
{
−1
2
(F −m)′C−1(F −m)

}
, (13)

where τ = (τ0, τ1, . . . , τp), m = Zβ, Z = (z1, . . . , zn)′ and C = {Cij} is an n×n

covariance matrix.

3 Posterior simulation

From the distributional assumption of Y = (y1, . . . , yn)′ and the prior distribu-

tions for the parameters specified above, the likelihood function can be obtained

as

p(Y |β, τ, φ) =
∫ n∏

i=1

p(yi|fi, φ)π(F |β, τ)dF, (14)

where p(yi|fi, φ) is the exponential family density given in (2) and fi = f(xi).

In the distribution of yi the canonical parameter θi is replaced with fi since the

canonical link function is considered in this paper. The likelihood is complicated

and intractable because this multiple integral cannot be in general solved in

closed form (an exception is a normal regression model). Therefore we resort

to MCMC sampling techniques to estimate the model. For a review of MCMC

methods, see Gelfand and Smith (1990), Tierney (1994), Gamerman (1997) and

the references therein.

To develop an operational MCMC scheme for simulating the posterior distri-

bution, it is necessary to include F in the simulation. Consequently, our MCMC
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algorithm consists of sampling β, τ and F from their conditional posterior dis-

tributions recursively. When the response variables have a normal distribution,

the sampling of σ2 is also included in a cycle of our MCMC algorithm.

It is easily derived that the conditional posterior distribution of β is

π(β|F, τ, φ, Y ) = N(β̂, B̂), (15)

where B̂−1 = Z ′C−1Z + V −1
0 and β̂ = B̂

(
Z ′C−1F + V −1

0 β0

)
. The conditional

posterior distribution of σ2 is given as

π(σ2|F, β, τ, Y ) = IG

(
n0 + n

2
,
s0 + (Y − F )′(Y − F )

2

)
. (16)

However, the computational problem arises in sampling F and τ since their

conditional posterior distributions can not be sampled by standard methods.

Therefore, we adopt the Metropolis–Hastings (MH) algorithm (Metropolis et

al., 1953 and Hastings, 1970) to overcome the problem.

3.1 Sampling τ

The conditional posterior distribution of τ is written as

π(τ |F, β, φ, Y ) ∝ |C|−1/2 exp
{
−1
2
(F −m)′C−1(F −m)

}
(17)

×
k∏

i=0

τ
−(mi0/2+1)
i e−ω0i/2τi ,

for which the construction of good proposals is not trivial. Neal (1996) pro-

posed the hybrid MCMC algorithm based on continuous time processes. Since

it requires discretization of systems and partial derivatives of the target density

during simulation, the hybrid MCMC algorithm is difficult to implement and

time consuming. Gutierrez-Peǹa and Smith (1998) approximated the condi-

tional posterior distribution by discretizing the parameter space of τ .

Alternatively, we advocate the use of a genetic adaptive Metropolis (GAM)

sampler proposed by Holmes and Mallick (1998b). The GAM sampler is a mod-

ification of the genetic algorithm (GA) (see, e.g., Goldberg, 1989) to fulfill the

requirements of a MCMC sampler, and augments the parameter space to ac-

commodate multiple chains in parallel. The idea behind the GAM sampler is

related to the snooker algorithm proposed by Gilks et al. (1994) and Roberts
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and Gilks (1994). An advantage of the GAM sampler is that gradient informa-

tion is implicitly encoded within the distribution of the parameters across the

parallel chains, which improves mixing property of the chain. In addition the

algorithm is very simple to implement requiring only a few extra lines of code

to a conventional MH sampler.

Since the τi’s are restricted to be positive, the GAM algorithm is not directly

applicable for the sampling of τ . Thus we transform τ to γ = log τ and consider

to sample γ instead. The GAM sampler generates a proposal value γ∗ as follows:

First augment γ to form a population Γ = {γ1, . . . , γM} whereM is a population

size. At each iteration select one member of the population, say γa, for updating.

Then apply the mutation or the crossover operator, which are explained below,

to the population with probabilities MR and 1−MR, respectively (MR is called

a mutation rate).

Mutation operator: The mutation operator generates a proposal value γ∗

from the random walk sampler,

γ∗ = γa + u, u ∼ N(0, δ2), (18)

which is accepted with probability

min
{
1,

π(γ∗|F, β, φ, Y )
π(γ|F, β, φ, Y )

}
. (19)

The acceptance probability is simply the ratio of the conditional posterior dis-

tributions of γ evaluated at the proposed and the current values.

Crossover operator: The crossover operator plays a central role in the

GAM sampler. In the cross operator two parent states γi and γj are selected

from the population such that i �= j �= a. Then an offspring state γo is created

by using a GA crossover scheme and {γi, γj}. Holmes and Mallick (1998b)
suggest that each parameter in γo is taken from either γi or γj with probability

1/2. After creating the offspring γo, a proposal value is sampled by

γ∗ =


 γa + 2(γo − γa), with probability FR,

γa + r(γo − γa)/||γo − γa||, otherwise,
(20)

where FR is a flip rate, || · || indicates the Euclidean norm, and r ∼ N(0, λ2)

with λ = ||γi − γj||. The fist move type is a reflection of γa about γo, and

the second one is a random sampler along the direction γo − γa. It should be
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noted that the proposal density is symmetric in all of the above move types.

Therefore, the proposed value γ∗ is accepted with probability given by (19).

If the algorithm starts with the dispersed population, the value of λ is likely

to be large at the beginning of the simulation. This results in large update

proposals in the crossover operator, and the GAM sampler explores the state

space more widely. As the simulation proceeds, the population settles down in

a high density region. Thus the value of λ will be reduced and smaller steps

will be taken.

Recently Liang and Wong (2000, 2001) proposed a very similar algorithm

which they called the evolutionary Monte Carlo method. In their algorithm

the same mutation operator is used, but the crossover operator is implemented

by the snooker algorithm. They also devised the exchange operator of parallel

tempering (Geyer, 1991) to take account of multimodal distributions.

It should be mentioned that the conditional posterior distribution of τ0 is

an inverse gamma distribution and its sampling is straightforward. Since, how-

ever, correlations between the τi’s were found from preliminary experiments, we

consider to sample the τi’s jointly for a better mixing property.

3.2 Sampling F

We now discuss to sample F from the conditional posterior distribution given

by

π(F |β, τ, φ, Y ) ∝
n∏

i=1

p(yi|fi, φ)× exp
{
−1
2
(F −m)′C−1(F −m)

}
. (21)

The most common strategy for sampling F may be to update fi one at a time,

as in Diggle et al. (1998) and Gutierrez-Peǹa and Smith (1998). However, this

single move sampler would exhibit poor mixing (see Liu et al., 1994). Instead, it

can be considered to sample all the fi’s simultaneously. Since the dimension of

F can be large, it is hard to find proposal densities which approximate well the

conditional posterior distribution given in (21). Consequently, this approach

suffers from slow mixing due to low acceptance probabilities. As a compromise

of these two approaches, we divide F into B blocks and sample each block in

turn.

It is easily derived that the conditional prior distribution of f[i:j] = (fi, . . . , fj)′
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given the rest is normal with mean

m(i,j) =




m[i:j] −K−1
[i:j]K[j+1:n]

(
f[j+1:n] −m[j+1:n]

)
, if i = 1,

m[i:j] −K−1
[i:j]K[1:i−1]

(
f[1:i−1] −m[1:i−1]

)
, if j = n,

m[i:j] −K−1
[i:j]

{
K[1:i−1](f[1:i−1] −m[1:i−1])

+K[j+1:n](f[j+1:n] −m[j+1:n])
}
, otherwise,

(22)

and covariance matrix

Σ(i,j) = K−1
[i:j], (23)

where m[i:j] = (mi, . . . ,mj)′ and K[i:j] denotes the submatrix of K = C−1 given

by the rows and columns numbered i to j. In addition K[1:i−1] and K[j+1:n] are

the matrices left and right of K[i:j], respectively.

To define a suitable proposal density, we consider the following adjusted

linear model (see McCullagh and Nelder, 1989):

ỹi = fi + εi, εi ∼ N(0, vi), (24)

where ỹi = g(µi) + (yi − µi)g′(µi) and vi = b′′(θ)g′(µi)2. It should be noted

that ỹi, µi and vi are evaluated at the current values of the parameters. Then,

combining the adjusted linear model (24) with the conditional prior distribution

derived above, we have

f[i:j] ∼ N
(
m̂(i,j), Σ̂(i,j)

)
, (25)

where

Σ̂−1
(i,j) = V −1

(i,j) +Σ
−1
(i,j),

m̂(i,j) = Σ̂(i,j)

(
V −1

(i,j)ỹ[i:j] +Σ
−1
(i,j)m(i,j)

)
,

V(i,j) = diag(vi, . . . , vj),

and ỹ[i:j] = (ỹi, . . . , ỹj)′. Although this distribution can be a good approxima-

tion to the conditional posterior distribution of f[i:j] which is the product of the

contributions of yl (l = i, . . . , j) and the conditional prior, the ratio of the target

and the proposal densities can be unbounded. Thus, as in Chib et al. (1998),

we adopt the multivariate t distribution as the proposal density, that is,

q
(
f∗
[i:j]|f[i:j]

)
=MV t

(
m̂(i,j), Σ̂(i,j), ν

)
,
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where ν denotes degrees of freedom. It should be noted that if a normal dis-

tribution is assumed for responses, the conditional posterior distribution of F

is normal with mean (I/σ2 + C−1)−1(Y/σ2 + C−1m) and covariance matrix

(I/σ2 + C−1)−1. In this case we do not have to rely on the MH algorithm to

update F .

To implement the block sampling, we must select the block sizes ki (i =

1, . . . , B). Following Shephard and Pitt (1997), we select ki randomly with Ui

being independent uniforms and

ki = int
[
n× i+ Ui

B + 2

]
, i = 1, . . . , B, (26)

and treat B as a tuning parameter. This allows the points of conditioning to

change over the iterations and ensure that the method does not become stuck

by an excessive amount of rejections.

3.3 Estimation of µ(x)

Suppose that we are concerned with estimation of µ(x) = E(y|x) for a given
value of x. Since µ(x) is related to f(x) through f(x) = g(µ(x)), all we require

is the posterior distribution of f(x) written as

π(f(x)|Y ) =
∫

π(f(x)|F,β, τ)π(F, β, τ |Y )dFdβdτ, (27)

where π(f(x)|F,β, τ) is the conditional distribution of f(x) given F . It follows

from the properties of the Gaussian process that π(f(x)|F,β, τ) is normal with

E(f(x)|F,β, τ) = m(x) + κ(x)′C−1(F −m), (28)

and

Var (f(x)|F,β, τ) = τ0 − κ(x)′C−1κ(x), (29)

where κ(x) = (C(x, x1), . . . , C(x, xn))′. Thus, given a sample from π(F, β, τ |Y ),
it is straightforward to draw f(x) from the posterior distribution. After obtain-

ing a simulated sample of f (t)(x) (t = 1, . . . , T ), we can estimate µ(x) by

µ̂(x) =
1
T

T∑
t=1

g−1(f (t)(x)), (30)

and other posterior summaries are easily calculated.
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4 Numerical examples

This section illustrates our approach using simulated and real data sets. In

Section 4.1 we simulated four data sets from a normal, a Poisson and a binomial

distributions. Section 4.2 briefly considers a data set studied by Brinkman

(1981) and fits a Gaussian regression model. Finally Section 4.3 examines a

count data set examined by Kennan (1985) and Jaggia (1991), and a Poisson

regression model is applied.

To implement the MCMC algorithm explained in the previous section, we

must choose several tuning parameters. There are four tuning parameters in the

GAM algorithm, namely M , MR, FR and δ2. Following Holmes and Mallick

(1998b), we set M = 10 and FR = 0.1. The values of MR and δ2 were obtained

in short preliminary runs by examining the acceptance rates. The degrees of

freedom for the multivariate t proposal density is fixed to ν = 10. The priors

for the estimation are defined by the hyper–parameters

β0 = 0, V0 = 1000× I,

m0i = 4, ωi0 = 0.02,

n0 = 4, s0 = 0.02,

which reflect weak prior information. Unless otherwise stated, all of the results

reported here are based on these parameter values.

4.1 Simulated data

Following Denison et al. (1998), response variables were generated from

yi ∼ N(µi, 0.22), i = 1, . . . , 150,

µi = xi + 2 exp(−16x2
i ),

where xi were equally spaced in the interval (−2, 2). With the simulated data
set, we fitted the Gaussian model by running the MCMC algorithm for 10,000

iterations following a burn–in phase of 5,000 iterations.

Figure 2 shows the true and the posterior estimates of the mean response

µ(x) together with the 90% intervals. It can be seen from Figure 2 that the

proposed method produces good estimates of µ(x). Table 1 reports the posterior

estimates of β and γ. The posterior mean and standard deviation of β1 are
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0.989 and 0.155, respectively, providing an evidence that the mean function of

the Gaussian process captures linear trend in the data.

To examine its convergence and mixing performances, we applied the GAM

samplers with M = 5, 10 and 20 for updating γ. For comparison, the random

walk sampler was also conducted. In this experiment, the starting values of fi

were set to yi, and those of β and σ2 were chosen from the ordinary least squares

estimates under a linear regression model. The population of γ was initialized

by a sample from a uniform distribution on (−3, 3)2. The resulting acceptance
rates for the GAM and the random walk samplers were about 50% and 40%,

respectively. We tried several initial values of γ and found quick convergence

of the GAM algorithm for any initial values of γ. However, the random walk

sampler sometimes exhibited slow convergence as shown in Figure 3, which plots

the sampling paths of the fist 2,000 iterations of γ1 and the log values of the

probability distribution of Y . It can be seen from the figure that the random

walk sampler is trapped around up to 1,3000 iterations and then suddenly moves

to a high density region. In contrast, the GAM sampler traverses the parameter

space widely at the start of the chain and shows better convergence properties

than the random walk sampler. We can also observe that the larger the value

ofM becomes, the longer time the GAM sampler needs to settle down in a high

density region.

Figure 4 shows the Euclidean distance between γ(t) and γ(t+1) over the

iterations, where γ(t) denotes the value of γ at the t-th iteration. It can be

seen that the GAM algorithm attempts larger changes than the random walk

sampler. This result suggests a good mixing property of the GAM sampler.

Figure 5 shows the estimated autocorrelations for the GAM (M = 10) and

the random walk samplers. The autocorrelations for the GAM sampler decay

more quickly than those for the random walk sampler. It is interesting to note

that the autocorrelations under the GAM sampler decrease very slowly after

lag 5. Nevertheless, it can be concluded that the GAM sampler possesses good

convergence and mixing properties from these findings.

To examine other distributions for response variables, we considered a Pois-

son and a binomial distributions. For the Poisson distribution, we considered
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the following two means:

µi =


 exp

{−200xi(xi − 0.5)2(xi − 1.0)
}
, (polynomial)

exp(1.0 + 2.0xi). (linear)

As an example of a binomial distribution, we used a logit model given by

yi ∼ Bi(µi, 1), i = 1, . . . , 150,

logit(µi) = 3 cos(2πxi).

In all of the models, xi were equally spaced in the interval (0, 1). We fitted

the models based on the same MCMC design as in the normal case, and the

results are shown in Figures 6 and 7. The posterior estimates of β and γ are

also summarized in Table 1.

From the figures, we can see that our approach works well again and the flex-

ibility of Gaussian processes can be verified. The posterior mean of γ1 under the

Poisson model with polynomial is the largest among all the cases, which reflects

complexity of the test functions. In the polynomial case, the corresponding

posterior mean and standard deviation of β1 are −0.402 and 2.831 respectively,
indicating that its posterior distribution is dispersed. Therefore, it can be con-

cluded that the mean function of the Gaussian process is constant and a linear

predictor is not appropriate. In the linear case of the Poisson model, the poste-

rior estimates of β are very close to the true values and the mean function of the

Gaussian process explains most part of the variation of the response variables.

Consequently, the small posterior means of γ0 and γ1 are observed as discussed

in Section 2.

Using the simulated data for the Poisson model with polynomial, we exam-

ined the effects of the number of blocks B on the convergence performances of

the block sampler. For this purpose we run the short MCMC algorithm of 200

iterations for B = 1, 15 and 150 with f(xi) initialized to zero. It should be noted

that the case of B = 150 corresponds the single move sampler. For comparison,

we also employed the conditional prior distribution given in (22) and (23) as

the proposal distribution for F . The use of the conditional prior proposal was

suggested by Knorr–Held (1999) in the context of dynamic models.

Figure 8 shows the posterior means of µ(x) after 20, 100 and 200 iterations.

The algorithm with B = 1 does not converge at all because of large rejection
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rate. In fact all the proposal values of f(xi) were rejected during the MCMC

updates in this case. On the other hand, we obtained the high average accep-

tance rates of f(xi) for B = 15 and 150, which were 79.9% and 96.1% respec-

tively. Consequently, f(xi) were frequently updated, and fast convergence was

achieved in these cases as shown in Figure 8. This finding is different from that

in Knorr–Held (1999). He carried out similar experiments using conditional

prior proposals in dynamic models and found slow convergence of the single

move sampler was found. When the conditional prior proposal was applied to

our model by setting B = 15, we observed that the average acceptance rate was

42.5%, which was smaller than that of our proposal. Figure 8 also shows slow

convergence of the conditional prior proposal. Thus the proposal distribution

based on the adjusted linear model approximates the target density better than

the conditional prior proposal, and its use results in quick convergence of the

MCMC algorithm.

To compare the efficiency of the block (B = 15) and the single (B = 150)

samplers, the autocorrelations were calculated from 10,000 draws beyond a burn-

in period of 5,000 iterations. Figure 9 shows that the single move sampler shows

quite large correlations compared with the block sampler with B = 15. Though

Diggle et al. (1998) and Gutierrez-Peǹa and Smith (1998) used the single move

sampler for updating the fi’s, this result suggests that the single move sampler

is less efficient and the use of the block sampler increases the reliability of the

MCMC algorithm.

4.2 Ethanol data

To illustrate our approach on a real data set, we consider the ethanol data ex-

amined by Brinkman (1981). The data set has 88 observations on NOx exhaust

emissions from a single cylinder engine (NOx), the engine’s equivalence ratio

(E) and compression ratio. We modeled the data using a Gaussian nonlinear

regression model where the response is NOx and the covariate is E. To estimate

the model, we run our algorithm for 15,000 iterations following a burn–in phase

of 5,000 iterations. For comparison, we fitted the model using the smooth-

ing spline (Wahba, 1990) and the local polynomial regression (Cleveland et al.,

1992) techniques. The results for these techniques were created by using the R
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functions smooth.spline and loess with defaults parameter values.

Figure 10 summarizes the results, and we can observe that the mean response

is evidently nonlinear. It can be seen from Figure 10 that our Bayesian estimate

fits the data well and is very similar to the smoothing spline estimate. Among

the three approaches, the local polynomial regression exhibits the worst fit. It

should be mentioned that, as discussed in MacKay (1998), Gaussian processes

are closely related to smoothing splines. This may be a reason why we obtained

the similar results for the Gaussian process and the smoothing spline approaches.

4.3 Strike data

In this section we consider the strike data analyzed by Kennan (1985) and Jag-

gia (1991). The data set consists of 108 strike frequencies recorded from January

1968 through December 1976. Though Kennan (1985) and Jaggia (1991) ex-

amined the data using duration models, we model the number of strikes based

on a Poisson model with the canonical link function. The response variable

(STRIKES) is the number of contract strikes in U.S. manufacturing beginning

each month. The covariates include a time trend (TIME) and a measure of the

cyclical departure of aggregate production from its trend level (OUTPUT).

Using the strike data described above, we estimated the two Poisson models.

The first model (Model 1) includes only TIME and the second model (Model

2) has both TIME and OUTPUT in a set of the covariates. Table 2 reports

the posterior estimates of the parameters which were based on 15,000 posterior

draws following a burn–in of 5,000 iterations. Judging from the estimates of

β, we can conclude that a linear predictor is not appropriate for this data set.

Although the posterior means of β and γ0 were almost the same in both models,

the posterior mean of γ1 became smaller by including OUTPUT. It is of interest

to note that the posterior mean of γ2 is very small compared with that of γ1.

This finding implies that OUTPUT explains only a small part of the variation

of the response variables. Therefore the level of economic activity has no effect

on strike frequency.

Figure 11 plots the posterior estimates of the mean responses along with the

95% intervals obtained from Model 1. It can be seen that the mean responses

exhibit some periodical movement and have several peaks. In particular we can
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observe the highest peak around in 1974.

5 Conclusions

This paper has considered a Bayesian semiparametric approach to generalized

nonlinear models, where the response variables have an exponential family den-

sity and the predictors are assumed to be an unknown function of covariates.

We have employed Gaussian process priors for the unknown function and devel-

oped MCMC methods based on the genetic adaptive Metropolis and the block

samplers for posterior inference. Our approach has been illustrated by both

simulated and real data.

The results for our experiments have shown that the Gaussian process priors

produce smooth and adequate estimates for nonlinear functions. It has been also

shown that both the GAM and the block samplers have good convergence and

mixing properties. We believe that the use of these algorithms improves over the

existing methods considered in, for example, Gutierrez-Peǹa and Smith (1998).

One drawback of the use of Gaussian process priors is that the inversion of

the n× n covariance matrix C is required for sampling τ , where n is a sample

size. It is well known that computational complexity of the matrix inversion

scales as O(n3). Therefore our approach takes long time for a large dataset

and further algorithmic improvements and/or approximations are necessary.

Furthermore, we have applied only the crossover operator explained in Section

3.1 in conducting the GAM sampler. Since the crossover operator is a core

part of the GAM sampler, further improvements might be possible by applying

other algorithms such as the snooker algorithm. These topics need further

investigations and are left for the future research.

Acknowledgment

The author is grateful to two anonymous referees for their useful comments,

which improved an earlier version of the paper. This research was partially

supported by the Japanese Ministry of Education, Culture, Sports, Science

and Technology under Grant-in-Aid for Encouragement of Young Scientists

17



(#12730019) .

References

[1] Brinkman, N. D. (1981). “Ethanol fuel - a single-cylinder engine study of

efficiency and exhaust emissions,” SAE transactions, 90, 1414–1424.

[2] Breslow, N. E. and Clayton, D. G. (1993). “Approximate inference in

generalized linear mixed models,” Journal of the American Statistical As-

sociation, 88, 9–25.

[3] Carroll, R. J., Fan, J., Gijbels, I., and Wand, M. (1997). “Generalized

partially linear single–index models,” Journal of the American Statistical

Association, 92, 477–489.

[4] Chib, S., Greenberg, E., and Winkelmann, R. (1998). “Posterior simula-

tion and Bayes factors in panel count data models,” Journal of Econo-

metrics, 86, 33–54.

[5] Cleveland, W. S., Grosse, E., and Shyu, W. M. (1992). “Local regression

models,” in J. M. Chambers and T. J. Hastie (eds.), Statistical Models in

S. Wadsworth & Brooks: California.

[6] Cressie, N. A. C. (1993). Statistics for Spatial Data, Revised edition. John

Wiley: New York.

[7] Dellaportas, P. and Smith, A. F. M. (1993). “Bayesian inference for gen-

eralized linear and proportional hazards models via Gibbs sampling,” Ap-

plied Statistics, 42, 443–460.

[8] Denison, D. G. T., Mallick, B. K., and Smith, A. F. M. (1998). “Automatic

Bayesian curve fitting,” Journal of the Royal Statistical Society Ser.B, 60,

333–350.

[9] De Oliveira, V. (2000). “Bayesian prediction of clipped Gaussian random

fields,” Computational Statistics & Data Analysis, 34, 299–314.

[10] Dey, D. K., Ghosh, S. K., and Mallick, B. K. (2000). Generalized Linear

Models: A Bayesian Perspective. Marcel Dekker: New York.

18



[11] Dey, D. K., Müller, P., and Sinha, D. (1998). Practical Nonparametric and

Semiparametric Bayesian Statistics. Springer: New York.

[12] Diggle, P. J., Tawn, J.A., and Moyeed, R. A. (1998). “Model–based geo-

statistics (with discussion),” Applied Statistics, 47, 299–326.

[13] Fahrmeir, L. and Tutz, G. (1994).Multivariate Statistical Modelling Based

on Generalized Linear Models. Springer: New York.

[14] Fan, J., Heckman, N. E., and Wand, M. P. (1995). “Local polynomial

kernel regression for generalized linear models and quasi-likelihood func-

tions,” Journal of the American Statistical Association, 90, 141–150.

[15] Ferguson, T. S. (1973). “A Bayesian analysis of some nonparametric prob-

lems,” Annals of Statistics, 1, 209–230.

[16] Gamerman, D. (1997). Markov Chain Monte Carlo. Chapman and Hall:

London.

[17] Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling based approaches

to calculating marginal densities,” Journal of the American Statistical

Association, 85,398–409.

[18] Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1996). “Efficient param-

eterizations for generalized linear mixed models (with discussion),” in

J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds.),

Bayesian Statistics 5. Oxford University Press: Oxford.

[19] Geyer,C. J. (1991). “Markov chain Monte Carlo maximum likelihood,” in

E. M. Keramigas (ed.), Computing Science and Statistics: Proceedings of

the 23rd Symposium on the Inference. Interface Foundation: Fairfax.

[20] Gilks, W. R., Roberts, G. O. and George, E. I. (1994). “Adaptive direction

sampling,” Statistician, 43, 179–189.

[21] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and

Machine Learning. Addison–Wesley: New York.

[22] Green, P. and Yandell, B. (1985). “Semi–parametric generalized linear

models,” in R. Gilchrist, B. Francis and J. Whittaker (eds.), Generalized

Linear Models. Springer: Heidelberg.

19



[23] Gu, C. (1990). “Adaptive spline smoothing in non–gaussian regression

models,” Journal of the American Statistical Association, 85, 801–807.
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Table 1: Simulated data: Posterior means and standard deviations are shown.

Normal Binomial

mean std dev mean std dev

β0 0.200 0.205 0.911 4.010

β1 0.989 0.155 0.022 5.594

γ0 -1.344 0.399 2.398 0.820

γ1 2.689 0.195 2.665 0.364

Poisson

polynomial linear

mean std dev mean std dev

β0 0.868 1.818 1.003 0.118

β1 -0.402 2.831 1.933 0.118

γ0 1.275 0.613 -5.091 0.641

γ1 3.613 0.255 -5.078 0.686
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Table 2: Strike data: Posterior means and standard deviations are shown.

Model 1 Model 2

mean std dev mean std dev

β0 1.487 0.161 1.485 0.157

β1 (TIME) -0.188 0.152 -0.179 0.148

β2 (OUTPUT) 0.094 0.120

γ0 -1.418 0.370 -1.429 0.328

γ1 (TIME) 4.163 0.330 4.208 0.256

γ2 (OUTPUT) -5.033 0.661
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Figure 1: Samples drawn from Gaussian processes: The figure plots three sam-

ples drawn from Gaussian processes with parameters (a) τ0 = 1.0 and τ1 = 0.1;

(b) τ0 = 1.0 and τ1 = 1.0; (c) τ0 = 1.0 and τ1 = 10.0; (d) τ0 = 0.1 and τ1 = 1.0.
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Figure 2: Simulated data (Normal): The true (dashed line) and the posterior

means of µ(x) (solid line) with 90% intervals (dotted line) are shown together

with data points (plus).
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Figure 3: Simulated data (Normal): The figure shows the time series plots of γ1

(left panels) and the log values of the probability distribution of Y (right panels).

From top to bottom, the panels show the results for the GAM samplers with

M = 5, 10, 20 and the random walk sampler, respectively.
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Figure 4: Simulated data (Normal): The figure shows the time series plots of

Euclidean norm of the successive values of γ1 for (a) the GAM sampler (M = 10)

and (b) the random walk sampler, respectively.
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Figure 5: Simulated data (Normal): The figure shows the estimated autocor-

relations of γ1 for (a) the GAM sampler (M = 10) and (b) the random walk

sampler, respectively.
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Figure 6: Simulated data (Poisson): The true (dashed line) and the posterior

means of µ(x) (solid line) with 90% intervals (dotted line) are shown together

with data points (plus). The panel (a) shows the results for the polynomial case

and the panel (b) for the linear case.
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Figure 7: Simulated data (Binomial): The true (dashed line) and the posterior

means of µ(x) (solid line) with 90% intervals (dotted line) are shown together

with data points (plus).
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Figure 8: Simulated data (Poisson): The figure shows the posterior means of

µ(x) after 20 (dotted line), 100 (dashed line) and 200 (solid line) iterations for

the number of blocks (a) B = 1; (b) B = 15; (c) B = 150, and for (d) the

conditional prior proposal.
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Figure 9: Simulated data (Normal): The figure shows the estimated autocor-

relations for (a) the block sampler (B = 15) and (b) the single move sampler

(B = 150), respectively.
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Figure 10: Ethanol data: The panel (a) shows the posterior means of µ(x) (solid

line) with 90% intervals (dotted line) and data points (plus). The panels (b)

and (c) show the estimated mean responses (solid line) obtained from the local

polynomial regression and the smoothing spline methods respectively.

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

2.5

5.0

7.5

10.0

12.5

15.0

17.5

year

Figure 11: Strike data: The figure shows the posterior means of µ(x) (solid line)

with 90% intervals (dotted line) and data points (plus).
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