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Abstract

In the dynamic factor model proposed by Stock and Watson (1989,
1991), a single unobserved factor common to some macroeconomic vari-
ables is defined as a composite index to measure business cycles. Kim
and Nelson (1998) extend their model combining with the regime-
switching model of Hamilton (1989) so that the mean growth rate
of the index may vary depending on whether the economy is in the
boom regime or in the recession regime. An advantage of the Kim
and Nelson (1998) model is that estimating the model by a Bayesian
method produces the posterior probabilities that the economy is in the
recession regime, which can be used to date the business cycle turn-
ing points. This article estimates the Stock and Watson (1989,1991)
and the Kim and Nelson (1998) models using some macroeconomic
variables in Japan. The model comparison using Bayes factor does
not provide strong evidence that the Kim and Nelson (1998) model is
favored over the Stock and Watson (1989,1991) model and no major
differences between the composite indices produced by the two models
are found. On the other hand, the Kim and Nelson (1998) model pro-
duces the estimates of turning points close to the reference dates by
the Economic and Social Research Institute in Cabinet Office.
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1 Introduction

How should we measure business cycles? This problem has long attracted

the attention of many macroeconomists and econometricians, and several

methods have been proposed. A well-known method is the one based on

dynamic factor models proposed by Stock and Watson (1989,1991). They

define the composite index of coincident economic indicators to measure

the state of overall economic activity as a single unobserved factor com-

mon to several macroeconomic variables using a dynamic factor model. Be-

cause their model can be estimated by the maximum likelihood method via

the Kalman filter, their composite index can be estimated by running the

Kalman filter or smoother given the maximum likelihood estimates of the

parameters.

Kim and Nelson (1998) extend the dynamic factor model of Stock and

Watson (1989,1991) so that the mean growth rate of the composite index,

may vary depending on whether the economy is in the recession regime or in

the boom regime. They specify the mean growth rate of the index using the

regime-switching model of Hamilton (1989). One advantage of their model

is that it produces not only the composite index but also the probabilities

that the economy is in the recession regime, which can be utilized to date

the business cycle turning points. It is, however, difficult to evaluate the

likelihood in their model, so that they apply a Bayesian method via the

Gibbs sampler. Specifically, the model parameters, the latent factor, and

the regime are sampled from their posterior distribution using the Gibbs

sampler, and simulated draws are used for Bayesian posterior analysis.

This article applies the Kim and Nelson (1998) model to macroeconomic

data in Japan to measure business cycles in Japan. While several researchers

such as Ohkusa (1992), Mori, Satake, and Ohkusa (1993), and Fukuda and
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Onodera (2001) have already applied the Stock and Watson (1989,1991)

model to the analysis of business cycles in Japan, there are few who have

applied the Kim and Nelson (1998) model. The only exception is Kaufman

(2000), who applies the Kim and Nelson (1998) model to eight countries

including Japan. While she uses the quarterly data for real GDP, consump-

tion, and investment, we use the monthly data selected from ten macroe-

conomic variables (see Table 1(A)) used by the Economic Planning Agency

(EPA), which was reorganized as Economic and Social Research Institute

(ESRI) in Cabinet Office after January 2001, to construct its composite

index.

Following Kim and Nelson (1998), we estimate the composite index and

the probabilities that the economy is in the recession as well as the model

parameters using a Bayesian method via the Gibbs sampler. To evaluate

the Kim and Nelson (1998) model, we also analyze whether the regime-

shift occurs in the mean growth rate of the composite index by comparing

the Kim and Nelson (1998) model with the Stock and Watson (1989,1991)

model. Classical test statistics such as the likelihood ratio statistics are not

directly applicable to this analysis (see Hansen (1992) and Garcia (1998)).

In a Bayesian framework, model comparisons are conducted based on the

posterior odds, which is the ratio of the marginal likelihood, which does

not cause any problem in analyzing whether the regime-shit occurs or not.

We adopt this method and calculate the marginal likelihood following the

method proposed by Chib (1995). A diagnostic checking is also conducted.

The model comparison using Bayes factor does not provide strong evi-

dence that the Kim and Nelson (1998) model is favored over the Stock and

Watson (1989,1991) model. In addition, no major differences between the

composite indices produced by the two models are found. On the other

hand, the Kim and Nelson (1998) model produces the estimates of turning
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points close to the reference dates by the Economic and Social Research

Institute in Cabinet Office.

The rest of this article is organized as follows. Section 2 explains the Kim

and Nelson (1998) model and a Bayesian method for analyzing this model.

Section 3 fits the model to macroeconomic data in Japan and summarizes

the results. Conclusions are given in Section 4.

2 Econometric Methodology

2.1 Dynamic Factor Models

Our analysis is based on the dynamic factor models proposed by Stock and

Watson (1988,1991) and developed by Kim and Nelson (1998). We start

with a brief summary of these models.

Let ∆Yit (i = 1, . . . , n) represent the growth rate of the ith macroeco-

nomic variable defined as the first difference of the log of the ith variable. In

dynamic factor models, ∆Yit consists of two components: One is the compo-

nent common to all variables ∆Ct, which is interpreted as the first difference

of the composite index Ct, and the other is the idiosyncratic component of

the ith variable eit.

∆Yit = λi(L)∆Ct + eit, (1)

where L is the lag operator and λi(L) = λi0L+ · · · + λiriL
ri . The idiosyn-

cratic component eit is assumed to follow an autoregressive (AR) process

ψi(L)eit = εit, εit ∼ i.i.d.N(0, σ2
i ) (2)

where ψi(L) = 1−ψi1L− · · ·−ψiqiLqi . The common factor ∆Ct is specified

as

φ(L)(∆Ct − µst − δ) = νt, νt ∼ i.i.d.N(0, 1) (3)

where φ(L) = 1 − φ1L − · · · − φpL
p, δ is the long-run growth of the index,
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and µst is the deviation from that long-run growth. Notice that the variance

of νt is normalized to unity for identification of the model.

While Stock and Watson (1989,1991) assume that µSt = 0, Kim and

Nelson (1998) allow it to vary depending on whether the economy is in a

recession (St = 0) or in a boom (St = 1) as follows.

µst = µ0 + µ1St, µ1 > 0. (4)

Kim and Nelson (1998) assume that St follows a Markov process with tran-

sition probabilities

P (St = 1|St−1 = 1) = π11

P (St = 0|St−1 = 0) = π00. (5)

We work with the demeaned growth rate of the i variable ∆yit(= ∆Yit −
∆Yit). Then, equations (1) and (3) can be expressed as follows.

∆yit = λi∆ct + eit (6)

φ(L)(∆ct − µst) = νt (7)

where ∆ct = ∆Ct − δ.

Let ∆yt = [∆y1t, . . . ,∆ynt]′. Then, the above model can be represented

as a state space form:

∆yt = Hζt, (8)

ζt = Mst + Fzt + ut, ut ∼ i.i.d.N(0,Σu). (9)

In this paper, we assume that n = 5, p = 3, ri = qi = 1 (i = 1, . . . , n).

Then, ζt, H, Mst , F , and σu are given by

ζt = [∆ct,∆ct−1,∆ct−2, e1t, e2,t, e3t, e4t, e5,t]′
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H =




λ10 λ11 0 1 0 0 0 0
λ20 λ21 0 0 1 0 0 0
λ30 λ31 0 0 0 1 0 0
λ40 λ410 0 0 0 0 1 0
λ50 λ510 0 0 0 0 0 1




F =




φ1 φ2 φ3 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 ψ1 0 0 0 0
0 0 0 0 ψ2 0 0 0
0 0 0 0 0 ψ3 0 0
0 0 0 0 0 0 ψ4 0
0 0 0 0 0 0 0 ψ5




Mst = [φ(L)µSt , 0, 0, 0, 0, 0, 0, 0]′

ut = [νt, 0, 0, ε1t, ε2t, ε3t, ε4t, ε5t]′

Σu =




1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 σ2

1 0 0 0 0
0 0 0 0 σ2

2 0 0 0
0 0 0 0 0 σ2

3 0 0
0 0 0 0 0 0 σ2

4 0
0 0 0 0 0 0 0 σ2
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where φ(L)µst = µSt − φ1µSt−1 − φ2µSt−2 − φ2µSt−3 .

In the Stock and Watson (1988,1991) model where µst is constant, the

model that consists of equations (8) and (9) becomes a usual linear-Gaussian

state space model, whose likelihood can be evaluated by executing the

Kalman filter. Therefore, the Stock and Watson (1988,1991) model can

be estimated by the maximum likelihood method. It is not true for the Kim

and Nelson (1998) model in which µst changes depending on St following a

Markov process.
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2.2 Estimation Method

As mentioned, while the Stock and Watson (1989,1991) model can be esti-

mated by the maximum likelihood method via the Kalman filter, it is not

so for the Kim and Nelson (1998) model. Following Kim and Nelson (1998),

we apply a Bayesian method via the Gibbs sampler.

The Gibbs sampler is a Monte Carlo method for sampling from joint dis-

tributions using conditional distributions. It is a convenient tool in Bayesian

inference when it is difficult to obtain the joint posterior distributions.

To see how the Gibbs sampler works, let us consider the problem of

sampling k (possibly vector-valued) random variables (θ1, θ2, . . . , θk) from

the joint density f(θ1, θ2, . . . , θk). Suppose that, for all i = 1, 2, · · · , k, it is

possible to generate θi from conditional distribution f(θi|{θj}j �=i) by some

methods. Starting from an arbitrary set of initial value (θ(0)
1 , θ

(0)
2 , . . . , θ

(0)
k ),

we draw θ
(1)
1 from f(θ1|θ(0)

2 , θ
(0)
3 , . . . , θ

(0)
k ), θ(1)

2 from f(θ2|θ(1)
1 , θ

(0)
3 , . . . , θ

(0)
k ),

and so on up to θ(k)
1 from f(θk|θ(1)

1 , θ
(1)
2 , . . . , θ

(1)
k−1). Let us call this procedure

one iteration. After l such iterations, we obtain (θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ). Under

mild conditions, it converges in distribution to be a set of random variables

from f(θ1, θ2, . . . , θk) as l → ∞.

For a sufficiently large M, (θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ) (l = M +1,M +2, · · · ,M +

N) can approximately be regarded as a sample from f(θ1, θ2, . . . , θk) al-

though they are serially correlated and not i.i.d. sample. Hence, the first M

draws are discarded and the last N draws are used for posterior inference. For

instance, the expectation of a function of the parameters, g(θ1, θ2, . . . , θk),

is estimated by the sample average

E[g(θ1, θ2, . . . , θk)] =
1
N

M+N∑
l=M+1

g(θ(l)
1 , θ

(l)
2 , . . . , θ

(l)
k ). (10)

The unknown parameters in the Kim and Nelson (1998) model that

consists of equations (1)–(5) are: λij (i = 1, . . . , n; j = 1, . . . , ri), ψij (i =
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1, . . . , n; j = 1, . . . , qi), σ2
i (i = 1, . . . , n), φj (j = 1, . . . , p), µ0, µ1, π00, and

π11 . As well as these values, latent variables ∆c̃T = [∆c1, . . . ,∆cT ] and

S̃T = [S1, . . . , ST ] are also treated as if they were unknown parameters.

Then, we sample from the following conditional distributions sequentially.

f(λi1, . . . , λiri |θ/(λi1,...,λiri
),∆c̃T , S̃T ,∆ỹT ) (i = 1, . . . , n) (11)

f(ψi1, . . . , ψiqi |θ/(ψi1,...,ψiqi
),∆c̃T , S̃T ,∆ỹT ) (i = 1, . . . , n) (12)

f(σ2
i |θ/σ2

i
,∆c̃T , S̃T ,∆ỹT ) (i = 1, . . . , n) (13)

f(φ1, . . . , φp|θ/(φ1,...,φp),∆c̃T , S̃T ,∆ỹT ) (14)

f(µ0, µ1|θ/(µ0,µ1),∆c̃T , S̃T ,∆ỹT ) (15)

f(π00|θ/π00
,∆c̃T , S̃T ,∆ỹT ) (16)

f(π11|θ/π11
,∆c̃T , S̃T ,∆ỹT ) (17)

f(S̃T |θ,∆c̃T ,∆ỹT ) (18)

f(∆c̃T |θ, S̃T ,∆ỹT ) (19)

where ∆ỹT = [(ỹ11, . . . , ỹn1)′, . . . , (ỹ1T , . . . , ỹnT )′], θ is the set of all parame-

ters, and θ/ω is the set of all parameters except ω.

For the unknown parameters, we adopt the following priors.

(λi1, . . . , λiri ∼ N(0, Iri), i = 1, . . . , n

(ψi1, . . . ψiqi)
′ ∼ N(0, Iqi)IS(ψi), i = 1, . . . , n

(φ1, . . . , φp)′ ∼ N(0, Ip)IS(φ)

(µ0, µ1)′ ∼ N(0, I2)I[µ1 < 0, µ2 > 0],

σ2
i ∼ IG(1/2,1/2).

π00 ∼ beta(18,2), π11 ∼ beta(18,2)

where I[·] is the indicator function that takes one if the condition in the

bracket is satisfied and zero otherwise, and IS(ψi) (or IS(φ)) is the indicator
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function that takes one if the roots of the polynomial ψi(L) (or φ(L)) lie

outside the unit circle and zero otherwise. Under these priors, the condi-

tional distributions (11)–(17) may simply be calculated, and it is easy to

sample from those distributions (see Kim and Nelson (1998, 1999)).

Sampling S̃T from (18) can be conducted using the Hamilton (1989) fil-

ter. Running the Hamilton (1989) filter produces p(St|∆c̃t) and p(St|∆c̃t−1)

for t = 1, . . . , T . Then, after generating ST from p(ST |∆c̃T ), we can pro-

ceed backwards in time. Specifically, given St+1, st is generated using the

probability

p(St|∆c̃t, St+1) =
p(St+1|St)p(St|∆c̃t)

p(St+1|∆c̃t)
where p(St+1|St) is the transition probability, and p(St|∆c̃t) and p(St+1|∆c̃t)
are obtained from the Hamilton (1989) filter.

Once S̃T are given, the Kim and Nelson (1998) model can be represented

by a linear Gaussian state space model. Therefore, it is straightforward

to sample ∆c̃T from (19) using the Kalman filter and smoother. Another

state space representation of the Kim and Nelson (1998) model is possible.

Suppose that n = 5, p = 3, and ri = qi = 1 (i = 1, . . . , n) again. Let

∆y∗it = ∆yit − ψi1∆yi,t−1 and ∆y∗t = [∆y∗1t, . . . ,∆y∗nt]′. Then, the Kim and

Nelson (1998) model may be represented as

∆yt = Λzt + εt, εt ∼ i.i.d.N(0,Σε) (20)

zt = Mst + Φzt + ut, vt ∼ i.i.d.N(0,Σv). (21)

Then, zt, Λ, Mst , Φ, Σε, and Σv are given by

zt = [∆ct,∆ct−1,∆ct−2]′

Λ =




λ10 −λ10ψ11 + λ11 −λ11ψ11

λ20 −λ20ψ21 + λ21 −λ21ψ21

λ30 −λ30ψ31 + λ31 −λ31ψ31

λ40 −λ40ψ41 + λ41 −λ41ψ41

λ50 −λ50ψ51 + λ51 −λ51ψ51
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Φ =



φ1 φ2 φ3

1 0 0
0 1 0




Mst = [φ(L)µSt , 0, 0]′

vt = [νt, 0, 0]′

Σε =




σ2
1 0 0 0 0
0 σ2

2 0 0 0
0 0 σ2

3 0 0
0 0 0 σ2

4 0
0 0 0 0 σ2
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Σv =




1 0 0
0 0 0
0 0 0




where φ(L)µst = µSt − φ1µSt−1 − φ2µSt−2 − φ3µSt−3 . Following Kim and

Nelson (1998), we use this state space model instead of equations (8) and

(9) to sample ∆c̃T .

Once ∆c̃T is obtained, they can be transformed into the composite index

C̃T = [C1, . . . , CT ] as

Ct = ∆ct + Ct−1 + δ

where δ is the long-run growth rate of the index, which can be estimated

using the steady-state Kalman gain obtained from applying the Kalman

filter to the state space model that consists of equations (8) and (9) (see

Kim and Nelson (1988,1999)).

2.3 Model Comparison

Model comparison in a Bayesian framework can be performed using posterior

odds ratio. Posterior odds ratio between model i, Mi, and model j, Mj , is
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given by

POR =
f(Mi|∆ỹT )
f(Mj|∆ỹT )

=
f(∆ỹT |Mi)
f(∆ỹT |Mj)

f(Mi)
f(Mj)

,

where f(∆ỹT |Mi)
f(∆ỹT |Mj)

and f(Mi)
f(Mj)

are called Bayes factor and prior odds respec-

tively.

As is the usual practice, we set the prior odds to be 1, so that the pos-

terior odds ratio is equal to the Bayes factor. To evaluate the Bayes factor,

which is the ratio of the marginal likelihoods, we follow the basic marginal

likelihood identity in Chib (1995). The log of the marginal likelihood of

model Mi can be written as

log f(∆ỹT |Mi)

= log f(∆ỹT |Mi, θi) + log f(θi|Mi) − log f(θi|Mi,∆ỹT ), (22)

where θi is the set of unknown parameters for model Mi, ln f(∆ỹT |Mi, θi)

is the likelihood, ln f(θi|Mi) is the prior density, and ln f(θi|Mi,∆ỹT ) is the

posterior density.

The above identity holds for any value of θi, but following Chib (1995),

we set θi at its posterior mean calculated using the MCMC draws. It is

straightforward to evaluate the prior density. The posterior density is eval-

uated using the method proposed by Chib (1995), and the likelihood is

evaluated using the particle filter (see Pitt and Shephard (1999)), which will

be explained in the next subsection.

2.4 Particle Filter

Consider the state space model that consists of equations (20) and (21). To

evaluate the likelihood and perform diagnostic checks, we need to sample

from the filtering density f(zt, St|∆ỹt). We use the particle filter proposed

by Pitt and Shephard (1999) for this sampling.
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First, note that the filter density f(zt, St|∆ỹt−1) is proportional to

f(∆yt|zt, St)f(zt, St|∆ỹt−1) = f(∆yt|zt)f(zt, St|∆ỹt−1). (23)

The second term can be expressed by an integral:

f(zt, St|∆ỹt−1) =
∫
f(zt, St|zt−1, St−1)f(zt−1, St−1|∆ỹt−1)dzt−1dSt−1.

(24)

Suppose that we have M candidate points
{
z
(m)
t−1 , S

(m)
t−1

}
(m = 1, . . . ,M)

sampled from the density f(zt−1, St−1|ỹt−1), then the latter integral could

be estimated by the average

f(zt−1, St−1|∆ỹt−1) ≈ 1
M

M∑
m=1

f(zt, St|z(m)
t−1 , S

(m)
t−1 ). (25)

We sample from the joint density f(zt, St,m|∆ỹt), where m is an index

on the mixture in (25),

f(zt, St,m|∆ỹt) ∝ f(∆yt|zt)f(zt, St|z(m)
t−1 , S

(m)
t−1 )

∝ f(∆yt|zt)f(zt|St, z(m)
t−1)p(St|S(m)

t−1)

= ηSt,mf(zt|St, z(m)
t−1 ,∆yt). (26)

By first selecting the indices (St,m) with probability proportional to ηSt,m

and then sampling from f(zt|St, z(m)
t−1 ,∆yt), which is N(µ(m)

t|t ,Σ
(m)
t|t ) in the

present context, provides us with a sample out of the first density f(zt, St|∆ỹt).
The mean µ(m)

t|t and the variance Σ(m)
t|t are given by

µ
(m)
t|t = MSt + Φz(m)

t−1 + ΣvΛ′Σ−1
ε et

Σ(m)
t|t = Σv − ΣvΛ′Σ−1

ε ΛΣv,

where et = ∆yt − Λ(MSt + Φz(m)
t−1).

Further, given the Gaussian distributions

yt|zt ∼ N(Λzt,Σε)

zt|St, z(m)
t−1 ∼ N(MSt + Φz(m)

t−1 ,Σv)
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the first stage weight ηSt,m are derived with the use of:

f(∆yt|zt)f(zt|St, z(m)
t−1) = f(∆yt, zt|St, z(m)

t−1)

= f(zt|St, z(m)
t−1 ,∆yt)f(∆yt|z(m)

t−1). (27)

Thus,

ηSt,m = f(∆yt|z(m)
t−1)p(St|S(m)

t )

∝ |Σε|−1/2 exp
(
−1

2
e′tΣ

−1
ε et

)
p(St|S(m)

t−1 ). (28)

2.5 Diagnostics and Likelihood

The diagnostics are based on the one-step ahead prediction density:

f(∆yt+1|∆ỹt, θ)

=
∫
f(∆yt+1|zt+1, St+1,∆ỹt, θ)f(zt+1, St+1|zt, St, θ)

f(zt, St|∆ỹt, θ)dStdztdSt+1dzt+1 (29)

Given the sampled values
{
z
(m)
t , S

(m)
t

}
, we first sample S(m)

t+1 using the tran-

sition probabilty p(S(m)
t+1 |St) and then sample z(m)

t+1 from

z
(m)
t+1 |z(m)

t , S
(m)
t+1 ∼ N(MSt + Φz(m)

t ,Σv)

Based on these M draws on St+1 and zt+1 generated from the one-step ahead

prediction density, we calculate the probability that ∆yi,t+1 will be less than

the observed value yoi,t+1

P (∆yi,t+1 ≤ ∆yoi,t+1|∆ỹt, θ) ≈ uMi,t+1 =
1
M

M∑
m=1

Pr(∆yi,t+1 ≤ ∆yoi,t+1|∆ỹt, θ)

Under the null of a correctly specified model, uMi,t converges in distribution

to independently and identically distributed uniform random variables as

M → ∞ (Rosenblatt (1952)). This provides a valid basis for diagnostic

checking. These variables can be mapped into the normal distribution, by
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using the inverse of the normal distribution function nMi,t = F−1(uMi,t) to

give a standard sequence of independent and identically distributed normal

variables.

The M draws on St+1 and zt+1 generated from the one-step ahead pre-

diction density can also be used to obtain the one-step ahead prediction

density as follows.

f(∆yt+1|∆ỹt, θ) =
1
M

M∑
m=1

f(∆yt+1|z(m)
t+1 , S

(m)
t+1 )

Using these values, we can evaluate the likelihood.

3 Empirical Results

3.1 Data Description

Economic and Social Research Institute (ESRI) uses eleven macroeconomic

variables to construct its Coincident Index. (For definitions of these eleven

variables, see Table 1(A).) Among them, “Business Profit” (ZBOAS) is quar-

terly data and the other ten variables are monthly data. We obtained the

raw data for these ten variables from 1975:1 to 2000:12 and transformed

them into seasonally adjusted ones by the Census-X11 method. The use of

all ten variables to estimate the Stock and Watson (1989,1991) and the Kim

and Nelson (1998) model is, however, computationally costly. Hence, our

analysis is based on the following two datasets, both of which consist of five

variables selected by Fukuda and Onodera (2001).

Dataset 1: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF (5) CELL9.

Dataset 2: (1) IIP95P (2) SMSALE (3) HWINMF (4) IIP95O (5) IIP95M

The both datasets were selected based on the principle not only to use vari-
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ables related to production but also use variables related to trade sales and

labor market. On one hand, dataset 1 includes “Index of Wholesale Sales”

(SCI95) as a trade sales variable nd “Ratio of Job Offers to Applicants” (ES-

RAO) and “Index of Non-Scheduled Hours Worked” (HWINMF) as labor

market variables. On the other hand, dataset 2 includes “Sales of Small and

Medium Size Companies” (SMSALE) as a trade sales variable and HWINF

as a labor market related variable. These two datasets, however, differ in

the sense that dataset 1 includes variables that are less correlated with ‘each

other while all variables except HWINMF in dataset 2 dataset 2 are highly

correlated with each other. Table 1 (B) reports the contemporaneous cor-

relation of the growth rate of the ten variables, which shows that “Index

of Industrial Production” (IIP95P) has large positive correlations with “In-

dex of Raw Materials Consumption (IIP95M), “Index of Operating Rate”

(IIP95O), and “Sales of Small and Medium Size Companies” (SMSALE).

In addition, Table 2 (C) shows the serial correlation of the growth rate and

serial correlation of these ten variables. It shows that two labor market

variables, that is, HWINMF and ESRAO, have positive serial correlations

and the other variables have negative serial correlations. Dataset 1 includes

the both of these two variables while dataset 2 includes only HWINMF.

3.2 Estimation Details

Following Fukuda and Onodera (2001), we set p = 3 and qi = 1 (i = 1, . . . , 5)

for the both datasets. While Fukuda and Onodera (2001) set ri = 0, we set

it equal to 1.

For parameter estimation, we conduct the MCMC simulation with 12000

iterations for each model. The first 2000 draws are discarded and then the

next 10000 are recorded. Using these 10000 draws for each of the parame-

ters, we calculate the posterior means, the standard errors of the posterior
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means, the 95% intervals, and the convergence diagnostic (CD) statistics

proposed by Geweke (1992). The posterior means are computed by aver-

aging the simulated draws. The standard errors of the posterior means are

computed using a Parzen window with a bandwidth of 1000. The 95% inter-

vals are calculated using the 2.5th and 97.5th percentiles of the simulated

draws. Geweke (1992) suggests assessing the convergence of the MCMC

by comparing values early in the sequence with those late in the sequence.

Let θ(i) be the ith draw of a parameter in the recorded 10000 draws, and let

θ̄A = 1
nA

∑nA
i=1 θ

(i) and θ̄B = 1
nB

∑10000
i=10001−nB

θ(i). Using these values, Geweke

(1992) proposes the following statistic called convergence diagnostics (CD).

CD =
θ̄A − θ̄B√

σ̂2
A/nA + σ̂2

B/nB
, (30)

where
√
σ̂2
A/nA and

√
σ̂2
B/nB are standard errors of θ̄A and θ̄B. If the

sequence of θ(i) is stationary, it converges in distribution to the standard

normal. We set nA = 1000 and nB = 5000 and compute σ̂2
A and σ̂2

B using

Parzen windows with bandwidths of 100 and 500 respectively.

In calculating the marginal likelihood, we set the number of iterations

to evaluate the both posterior densities and the likelihood set equal to 2000.

3.3 Estimation Results

Table 2 shows the estimation results for dataset 1. Table 2 (A) and (B)

are the results for the Kim and Nelson (1998) model and the Stock and

Watson (1989,1991) model respectively. According to the CD values, the

null hypothesis that the sequence of 10000 draws is stationary is accepted

at the 5% significance level for all parameters in the both models. The

log marginal likelihood of the Kim and Nelson (1998) model of -2714.16 is

smaller than that of the Stock and Watson (1989,1991) model of -2713.31,

indicating that the latter model is favorable over the former model.
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Table 2 (C) shows the results of diagnostic checking based on variables

nMi,t explained in Section 2. The Table shows the mean, the standard devia-

tion, the skewness, the kurtosis, and the Ljung-Box statistics to test the null

hypothesis of no serial correlation up to the sixth lag, where the number in

brackets show the standard errors. If the model is correctly specified, the

asymptotic distribution of nMi,t is the standard normal. For SCI95, ESRAO,

and HWINM, the null hypothesis of no serial correlation is rejected at the

1% level. For all variables, the kurtosis is significantly larger than three.

Figures 1 (A) depicts the CIs estimated by the Kim and Nelson (1998)

model and the Stock and Watson (1989,1991) model jointly with that the

ESRI’s CI. Figure 1 (B) depicts the posterior probability that the economy

is in the recession state in each month as inferred from the Kim and Nelson

(1998) model. This probability can be calculated simply by averaging 10000

draws of the state St sampled from its posterior distribution.

Table 3 shows the results for dataset 2. According to the CD values, the

null hypothesis that the sequence of 10000 draws is stationary is accepted

at the 5% significance level for all parameters in the both models again.

The log marginal likelihood of the Kim and Nelson (1998) model of -2202.10

is slightly larger than that of the Stock and Watson (1989,1991) model of

-2203.91, providing evidence, although weak, that the mean growth rate

shifts depending on whether the economy is in a recession or in a boom.

Table 3 (C) shows the results of diagnostic checking. Except for HWINMF,

the null hypothesis of no serial correlation is rejected at the 1% level. The

kurtosis is still significantly larger than three for all variables, indicating

that a more leptokurtic distribution such as the Student t distribution may

be required for the error terms.1

1 See Geweke (1993), Fernández and Steel (1998), and Watanabe (2000) for the Bayesian
treatment when the error terms follow the Student t distribution.
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Figures 2 (A) depicts the CIs estimated by the Kim and Nelson (1998)

model and the Stock and Watson (1989,1991) model jointly with that the

ESRI’s CI. Figure 2 (B) depicts the posterior probability that the economy

is in the recession state in each month as inferred from the Kim and Nelson

(1998) model. In contrast to the probability based on dataset 1, it moves in

a wider range between 0% and 100%, compared to Figure 1 (B).

We further estimate the Kim and Nelson model by using the following

dataset.

Dataset 3: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF.

This dataset is the one in which CELL 6 is excluded from dataset 1.

These four variables are used to construct the Nikkei Business Index because

they correspond to the four variables used by the Department of Commerce

(DOC) to construct its composite index: industrial production, total per-

sonal income less transfer payments in 1987 dollars, employees on nonagri-

cultural payrolls, and total manufacturing and trade sales in 1987 dollars.

We only report the posterior probability of a recession, which is depicted in

Figure 3. Unlike datasets 1 and 2, the posterior probability moves in a nar-

row range around 50%, so that it cannnot be used to date the business cycle

turning points. This may be attributed to the fact that the four variables

in dataset 3 are weakly correlated with each other.

In dataset 2, the null hyposesis of no serial correlation in the diagnostic

statistic is rejected for HWINMF. This may be attributed to the fact that

HWINMF has positive serial correlation while all other variables in dataset

2 have negative serial correlation and HWINF has weakly correlated with

other variables. Hence, we also analyze the following dataset.
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Dataset 4: (1) IIP95P (2) SMSALE (3) IIP95O (4) IIP95M

The posterior probabilities of a recession calculated by fitting the Kim

and Nelson model to dataset 4 are depicted in Figure 4.

Following Kaufman (2000), we date the turning points by defining period

t as a peak if P (St = 1|YT ) < 0.5 and P (St = 1|YT ) > 0.5 and a trough

if the posterior probability P (St = 1|YT ) > 0.5 and P (St = 1|YT ) < 0.5.

The estimated turning points are shown in Table 4 jointly with the reference

date by the ESRI.

4 Conclusions

This article fits the Markov switching dynamic factor model proposed by

Kim and Nelson (1998) to some macroeconomic variables in Japan. We find

that choice of variables is important when we use this model. This model

performs poorly with the weakly correlated data and performs well with the

highly correlated data.

In this article, we focus on the in-sample fit of the model. Needless to

say, it is worthwhile examining the out-of-sample forecasting ability of this

model.
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Table 1. Eleven Variables used to construct by the Economics and Social
Research Institute to Construct its Composite Index

(A) Definition of Variables

1 IIP95M Index of Raw Materials Consumption, Mfg.
2 IIP95O Index of Operating Rate, Mfg.
3 HWINMF Index of Non-scheduled Hours Worked, Mfg
4 ESRAO Ratio of Job Offers to Applicants
5 SDS Sales of Department Stores
6 CELL9 Electric Power Consumption of Large Users
7 IIP95S Index of Producers’ Shipments, Investment Goods
8 SCI95 Index of Wholesale Sales
9 SMSALE Sales of Small and Medium Size Companies
10 IIP95P Index of Industrial Production, Mining and Mfg.
11 ZBOAS Business Profit, All Industries
Note: ZBOAS is quarterly data and the others are monthly data.

(B) Contemporaneous Correlations of the Growth Rate of the Ten
Variables

IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
IIP95M 1.0000
IIP95O 0.8820 1.0000
HWINMF 0.3321 0.3152 1.0000
ESRAO 0.2401 0.2429 0.4157 1.0000
SDS -0.0671 -0.0943 -0.0656 -0.0054 1.0000
CELL9 0.6507 0.6196 0.2549 0.2059 -0.0467 1.0000
IIP95S 0.5250 0.5810 0.2088 0.1738 0.0298 0.4408 1.0000
SCI95 0.5038 0.5059 0.1158 0.0974 0.3845 0.4562 0.4444 1.0000
SMSALE 0.6843 0.6632 0.2728 0.2288 0.0348 0.5221 0.6334 0.6070 1.0000
IIP95P 0.8673 0.8872 0.2524 0.2364 -0.0727 0.6822 0.6624 0.6096 0.7756 1.0000

(C) Serial Correlations of the Growth Rate of Ten Variables

Variabels IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
correlation -0.3492 -0.4002 0.4176 0.5574 -0.5628 -0.2286 -0.4604 -0.3561 -0.3550 -0.4227
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TABLE 2. Estimation Results for Dataset 1

(A) Kim and Nelson Model

Marginal Likelihood = -2714.16

Parameter Mean Standard Error 95% Interval CD
∆Ct

π00 0.9045 0.0023 [0.7578,0.9807] 0.64
π11 0.9108 0.0038 [0.7648,0.9815] -0.89
φ1 -0.0489 0.0164 [-0.3711,0.2305] 1.05
φ2 0.1034 0.0080 [-0.1170,0.2604] 0.87
φ3 0.3572 0.0056 [0.1795,0.4989] 1.60
µ0 -0.3460 0.0246 [-0.9584,-0.0144] 1.55
µ1 0.5424 0.0405 [0.0156,1.4138] -1.59
y1t

λ10 1.0739 0.0026 [0.9301,1.2141] 1.50
λ11 -0.4708 0.0059 [-0.6210,-0.3100] -0.77
ψ1 -0.3803 0.0030 [-0.5192,-0.2328] -0.89
σ2

1 0.5208 0.0066 [0.3256,0.7779] -0.36
y2t

λ20 0.9507 0.0028 [0.7782,1.1313] 1.11
λ21 -0.4521 0.0055 [-0.6406,-0.2628] -1.24
ψ2 -0.3075 0.0010 [-0.4232,-0.1922] -0.98
σ2

2 2.0372 0.0031 [1.6911,2.4346] -0.98
y3t

λ30 0.4653 0.0031 [0.2540,0.6779] 1.11
λ31 0.3589 0.0013 [0.1601,0.5556] 0.69
ψ3 0.4102 0.0013 [0.2863,0.5319] -0.82
σ2

3 3.1206 0.0054 [2.6375,3.6731] -1.20
y4t

λ40 0.5369 0.0022 [0.3850,0.6914] 1.22
λ41 0.4272 0.0025 [0.2679,0.5886] 0.92
ψ4 0.1370 0.0025 [-0.0049,0.2846] -1.02
σ2

4 1.6903 0.0051 [1.4014,2.0190] -0.66
y5t

λ50 0.7666 0.0014 [0.6472,0.8872] 0.86
λ51 -0.2366 0.0060 [-0.3932,-0.0800] -1.06
ψ5 -0.2060 0.0013 [-0.3359,-0.0773] -0.15
σ2

5 0.7474 0.0042 [0.6030,0.9132] 0.85
Note: y1t, y2t, y3t, y4t, y5trepresent IIP95P, SCI95, ESRAO, HWINMF, and
CELL9 respectively. The first 2000 draws are discarded and then the next 10000
are used for calculating the posterior means, the standard errors of the posterior
means, 95% interval, and the convergence diagnostic (CD) statistics proposed by
Geweke (1992). The posterior means are computed by averaging the simulated
draws. The standard errors of the posterior means are computed using a Parzen
window with a bandwidth of 1000. The 95% intervals are calculated using the
2.5th and 97.5th percentiles of the simulated draws. The CD is computed using
equation (30), where we set nA = 1000 and nB = 5000 and compute σ̂2

A and σ̂2
B

using a Parzen window with bandwidths of 100 and 500 respectively.
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(B) Stock and Watson Model

Marginal Likelihood = -2713.31

Parameter Mean Standard Error 95% Interval CD
∆Ct

φ1 0.0164 0.0044 [-0.1725,0.2087] -0.93
φ2 0.1526 0.0008 [0.0362,0.2683] -0.28
φ3 0.3904 0.0006 [0.2716,0.5026] 0.46
y1t

λ10 1.304 0.0035 [0.9832,1.2702] 1.65
λ11 -0.5063 0.0026 [-0.6642,-0.3023] 0.93
ψ1 -0.3893 0.0019 [-0.5293,-0.2335] 0.80
σ2

1 0.4775 0.0057 [0.2632,0.7090] -1.28
y2t

λ20 0.9936 0.0013 [0.8220,1.1708] 0.90
λ21 -0.4840 0.0028 [0.4776,0.9502] 0.75
ψ2 -0.3025 0.0007 [-0.4179,-0.1868] 1.05
σ2

2 2.0207 0.0025 [1.6806,2.4113] -0.73
y3t

λ30 0.4735 0.0015 [0.2629,0.6904] -0.23
λ31 0.3372 0.0010 [0.1386,0.5358] 0.85
ψ3 0.4481 0.0013 [0.3224,0.5679] 0.81
σ2

3 3.0486 0.0030 [2.5843,3.5953] 1.43
y4t

λ40 0.5615 0.0014 [0.4061,0.7167] 1.21
λ41 0.4258 0.0023 [0.2692,0.5835] 1.10
ψ4 0.1391 0.0009 [0.0027,0.2802] -0.12
σ2

4 1.6958 0.0030 [1.4137,2.0224] 1.43
y5t

λ50 0.8001 0.0015 [0.6848,0.9222] 0.47
λ51 -0.2616 0.0030 [-0.4082,-0.1138] 1.03
ψ5 -0.1975 0.0010 [-0.3266,-0.0666] 1.19
σ2

5 0.7397 0.0028 [0.5969,0.9018] 1.55
Note: y1t, y2t, y3t, y4t, y5trepresent IIP95P, SCI95, ESRAO, HWINMF, and
CELL9 respectively. The first 2000 draws are discarded and then the next 10000
are used for calculating the posterior means, the standard errors of the posterior
means, 95% interval, and the convergence diagnostic (CD) statistics proposed by
Geweke (1992). The posterior means are computed by averaging the simulated
draws. The standard errors of the posterior means are computed using a Parzen
window with a bandwidth of 1000. The 95% intervals are calculated using the
2.5th and 97.5th percentiles of the simulated draws. The CD is computed using
equation (30), where we set nA = 1000 and nB = 5000 and compute σ̂2

A and σ̂2
B

using a Parzen window with bandwidths of 100 and 500 respectively.
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(C) Diagnostic Check for the Kim and Nelson Model

IIP95P SCI95 ESRAO HWINMF CELL9
Mean 0.0304 0.0178 0.0230 0.0356 0.0287

(0.0581) (0.0565) (0.0570) (0.0558) (0.0584)
St. dev. 1.0223 0.9950 1.0027 0.9829 1.0274
Skewness -0.2690 -0.1454 -0.1355 0.3565 0.1320

(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)
Kurtosis 4.0703 7.9968 5.7695 5.0004 4.8018

(0.2782) (0.2782) (0.2782) (0.2782) (0.2782)
LB(6) 8.31 18.17 44.17 61.14 13.43
Note: Numbers in bracket are standard errors. LB(6) is the
Ljung-Box statistic including six lags. The critical values for
LB(6) are: 10.64 (10%), 12.59 (5%), 16.81 (1%).
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TABLE 3. Estimation Results for Dataset 2.

(A) Kim and Nelson Model

Marginal Likelihood = -2202.10

Parameter Mean Standard Error 95% Interval CD
∆Ct

π00 0.9178 0.0010 [0.8334,0.9698] -0.42
π11 0.9368 0.0018 [0.8401,0.9779] 0.955
φ1 -0.2761 0.0057 [-0.4595,-0.0597] -0.00
φ2 0.0008 0.0049 [-0.1641,0.2059] -0.31
φ3 0.2657 0.0033 [0.1236,0.4273] -0.29
µ0 -0.6341 0.0149 [-0.9535,-0.0767] -0.80
µ1 1.0687 0.0242 [0.1435,1.5009] 0.97
y1t

λ10 1.0930 0.0041 [0.9875,1.2135] -0.79
λ11 -0.4251 0.0042 [-0.5467,-0.2959] -1.33
ψ1 -0.4006 0.0010 [-0.5269,-0.2681] 0.34
σ2

1 0.2649 0.0010 [0.1997,0.3434] -1.32
y2t

λ20 0.8629 0.0035 [0.7463,0.9936] -0.76
λ21 -0.2101 0.0031 [-0.3285,-0.0920] -1.39
ψ2 -0.3417 0.0006 [-0.4509,-0.2308] -0.44
σ2

2 0.9226 0.0009 [0.7738,1.0903] -0.78
y3t

λ30 0.5736 0.0021 [0.4377,0.7180] -1.05
λ31 0.4670 0.0022 [0.3356,0.6070] -0.89
ψ3 0.0848 0.0017 [-0.0478,0.2173] -0.38
σ2

3 1.6668 0.0032 [1.4080,1.9668] -1.01
y4t

λ40 1.1547 0.0045 [1.0146,1.2890] -0.85
λ41 -0.4274 0.0045 [-0.5554,-0.2921] -1.28
ψ4 -0.4088 0.0014 [-0.5588,-0.2520] -0.86
σ2

4 0.3516 0.0008 [0.2717,0.4494] -0.41
y5t

λ50 1.1268 0.0043 [1.0180,1.2518] -1.21
λ51 -0.3209 0.0044 [-0.4478,-0.1810] -1.39
ψ5 -0.2604 0.0013 [-0.3971,-0.1215] -1.09
σ2

5 0.3233 0.0008 [0.2504,0.4097] 1.26
Note: y1t, y2t, y3t, y4t, y5t represent IIP95P, SMSALE, HWINMF, IIP95O, and
IIP95P. The first 2000 draws are discarded and then the next 10000 are used for
calculating the posterior means, the standard errors of the posterior means, 95%
interval, and the convergence diagnostic (CD) statistics proposed by Geweke
(1992). The posterior means are computed by averaging the simulated draws.
The standard errors of the posterior means are computed using a Parzen window
with a bandwidth of 1000. The 95% intervals are calculated using the 2.5th and
97.5th percentiles of the simulated draws. The CD is computed using equation
(30), where we set nA = 1000 and nB = 5000 and compute σ̂2

A and σ̂2
B using a

Parzen window with bandwidths of 100 and 500 respectively.
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(B) Stock and Watson Model

Marginal Likelihood = -2203.91

Parameter Mean Standard Error 95% Interval CD
∆Ct

φ1 -0.0869 0.0028 [-0.2229 , 0.0499] 1.23
φ2 0.1715 0.0012 [0.0627 , 0.2783] 0.71
φ3 0.3785 0.0007 [0.2728 , 0.4830] -0.91
y1t

λ10 1.2304 0.0028 [1.1229 , 1.3471] 0.01
λ11 -0.4982 0.0031 [-0.6302 , -0.3704] -1.24
ψ1 -0.3874 0.0009 [-0.5164 , -0.2544] -0.16
σ2

1 0.2329 0.0007 [0.1743 , 0.3009] 0.00
y2t

λ20 0.9695 0.0021 [0.8475 , 1.0997] -0.08
λ21 -0.2596 0.0025 [-0.3910 , -0.1335] -1.21
ψ2 -0.3395 0.0007 [-0.4512 , -0.2278] -1.05
σ2

2 0.9042 0.0009 [0.7572 , 1.0738] -1.40
y3t

λ30 0.6409 0.0014 [0.4902 , 0.7936] -0.37
λ31 0.5017 0.0018 [0.3556 , 0.6511] -0.49
ψ3 0.0814 0.0013 [-0.0476 , 0.2171] -1.01
σ2

3 1.6608 0.0026 [1.4044 , 1.9578] -1.00
y4t

λ40 1.3007 0.0030 [1.1849 , 1.4245] -0.06
λ41 -0.5049 0.0033 [-0.6453 , -0.3658] -1.16
ψ4 -0.3640 0.0008 [-0.4894 , -0.2363] -0.78
σ2

4 0.3063 0.0007 [0.2389 , 0.3831] 0.07
y5t

λ50 1.2589 0.0030 [1.1434 , 1.3777] -0.01
λ51 -0.3726 0.0010 [-0.5166 , -0.2282] -1.24
ψ5 -0.2816 0.0013 [-0.4095 , -0.1515] -1.42
σ2

5 0.3159 0.0009 [0.2479 , 0.3945] 0.58
Note: y1t, y2t, y3t, y4t, y5t represent IIP95P, SMSALE, HWINMF, IIP95O, and
IIP95P. The first 2000 draws are discarded and then the next 10000 are used for
calculating the posterior means, the standard errors of the posterior means, 95%
interval, and the convergence diagnostic (CD) statistics proposed by Geweke
(1992). The posterior means are computed by averaging the simulated draws.
The standard errors of the posterior means are computed using a Parzen window
with a bandwidth of 1000. The 95% intervals are calculated using the 2.5th and
97.5th percentiles of the simulated draws. The CD is computed using equation
(30), where we set nA = 1000 and nB = 5000 and compute σ̂2

A and σ̂2
B using a

Parzen window with bandwidths of 100 and 500 respectively.
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(C) Diagnostic Check for the Kim and Nelson (1997) Model

IIP95P SMSALE HWINMF IIP95O IIP95P
Mean 0.0129 0.0107 0.0263 0.0210 0.0160

(0.0590) (0.0571) (0.0559) (0.0591) (0.0586)
St. dev. 1.0384 1.0051 0.9843 1.0406 1.0318
Skewness -0.3275 0.0174 0.3323 -0.2062 -0.2058

(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)
Kurtosis 4.2933 4.4246 4.7422 3.5241 3.6938

(0.2782) (0.2782) (0.2782) (0.2787) (0.2787)
LB(6) 4.93 11.92 69.36 10.82 4.94
Note: Numbers in bracket are standard errors. LB(6) is the
Ljung-Box statistic including six lags. The critical values for
LB(6) are: 10.64 (10%), 12.59 (5%), 16.81 (1%).

28



Table 4 ESRI Business cycle turning points versus our turning points based on
Kim and Nelson’s posterior probability.

ESRI K&N(Data1) K&N(Data2) K&N(Data4)
P 1975.03
T 1977.01
P
P 1977.10
T 1980.02 1980.02 1980.02 1980.02
P 1981.03 1981.06
T 1981.10 1981.10
P 1983.02 1982.12 1982.12 1982.12
T 1985.06 1985.05 1985.05 1985.05
P 1986.11 1986.11 1986.11 1986.11
T 1991.02 1990.12 1990.12 1991.01
P 1993.10 1994.01 1994.01 1994.01
T 1995.03 1995.04 1995.04
P 1995.09 1995.09 1995.09
T 1997.03 1997.03 1997.05 1997.05
P 1999.04 1999.02 1999.01 1999.01
T 2000.08 2000.08

“P”(peak) indicates the date when the posterior probability P (St = 1|yT ) > 0.5
and P (St+1 = 1|yT ) < 0.5. “T”(trough) indicates the date when the posterior
probability P (St = 1|yT ) < 0.5 and P (St+1 = 1|yT ) > 0.5.
The column “K&N” is our turning point based on Kim and Neslson model. “ESRI”
is the reference date by the Economic and Social Reserch Institution in Cabinet
office.
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