
Multi-move sampler for estimating non-Gaussian time series

models: Comments on Shephard and Pitt (1997)

by Toshiaki Watanabe and Yasuhiro Omori∗

Department of Economics, Tokyo Metropolitan University, Tokyo, Japan

twatanab@bcomp.metro-u.ac.jp omori@bcomp.metro-u.ac.jp

Abstract

This note points out a problem in the multi-move sampler proposed by Shephard and Pitt

(1997) and corrects their method. The performance of the original Shephard and Pitt (1997)

method and the correct method is examined by estimating stochastic volatility models using

simulated data. It is found that the original method yields an estimation bias which increases

with the number of blocks while the correct one performs well irrespective of the number of

blocks.
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1 Introduction

Shephard and Pitt (1997) have proposed a method so called “multi-move sampler” for sampling

latent state variables in non-linear and non-Gaussian state space models from their posterior density

given the parameters. As shown in Shephard and Pitt (1997), a single move sampler which generates

a single state variable at a time would produce a highly correlated sample sequence when state

variables are highly autocorrelated. To obtain independent samples, we need to repeat the sampling

a huge number of times. To reduce this inefficiency, Shephard and Pitt (1997) divide the state

variables into several blocks and sample each block at a time. Another feature of their method

is to sample state errors instead of sampling state variables directly. For this sampling, they use

the Metropolis-Hastings acceptance-rejection algorithm proposed by Tierney (1994). To generate

candidates, they first approximate a true posterior density for a block of state errors given the

parameters and the other blocks by a linear Gaussian system. Then, using a simulation smoother

(de Jong and Shephard, 1995), candidates for state errors are sampled.

Since their method is highly efficient and the speed of convergence is remarkably fast, it has

been applied by some researchers such as Pitt and Shephard (1999) and Watanabe (2000). There

is, however, a problem in their method. Specifically, they omit a term in the posterior density of a

block of state errors given the parameters and the other blocks. This note corrects their method

by taking account of this omitted term. To examine how this correction is important, we estimate

stochastic volatility models using simulated data by the both original Shephard and Pitt (1997)

and correct methods. We find that the original method yields an estimation bias which increases

with the number of blocks while the correct one performs well irrespective of the number of blocks.

We further find that this bias is severe when the latent variables are highly autocorrelated. In such

a case, the original method yields a significant bias even if the number of blocks is small.

This note is organized as follows. Section 2 explains a problem in the Shephard and Pitt (1997)

multi-move sampler and corrects their method. Section 3 examines the performance of the original

Shephard and Pitt (1997) method and the correct method by estimating stochastic volatility models

using simulated data. Section 4 gives conclusion.
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2 A Correct Multi-Move Sampler

Suppose that the univariate time series yt are distributed, conditionally on a univariate θt accord-

ing to f(yt|θt) (t = 1, . . . , n) . Following Shephard and Pitt (1997), we consider the exponential

family written as

log f(yt|θt) = ytθt − b(θt) + c(yt), (1)

h(θt) = dt = ztαt + xtβ

αt+1 = Ttαt + Htut, ut ∼ NID(0, I), (2)

α1 ∼ N(a1|0, P1|0),

where αt are state variables, xt and Wt are regressors, and b(θt) , c(yt) , and h(θt) are known

functions, The log f(yt|θt) and h(θt) are assumed to be continuously twice differentiable with

respect to θ throughout.

Consider the density for (ut−1, . . . , ut+k−1) conditional on (αt−1, αt+k+1, yt, . . . , yt+k) . Fol-

lowing Shephard and Pitt (1997), we write l(θt) to denote log f(yt|θt) . Then, the logarithm of

its density is given by

log f(ut−1, . . . , ut+k−1|αt−1, αt+k+1, yt, . . . , yt+k)

= constant − 1
2

t+k−1∑
s=t−1

u2
s +

t+k∑
s=t

l(θs)

−1
2
(αt+k+1 − Tt+kαt+k)′Ω−1

t+k(αt+k+1 − Tt+kαt+k), (3)

where Ωt+k = Ht+kH
′
t+k. The problem with Shephard and Pitt (1997) is that the last term of the

right-hand-side is omitted.

Applying a Taylor expansion around θs = θ̂s to equation (3) without omitting the last term

yields:

log f(ut−1, . . . , ut+k−1|αt−1, αt+k+1, yt, . . . , yt+k)

≈ constant − 1
2

t+k−1∑
s=t−1

u2
s +

t+k∑
s=t

l(θ̂s) +
t+k−1∑
s=t−1

zs(αs − α̂s)l′(θ̂s) +
1
2
{zs(αs − α̂s)}2l′′(θ̂s)

−1
2
(αt+k+1 − Tt+kα̂t+k)′Ω−1

t+k(αt+k+1 − Tt+kα̂t+k)
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+(αt+k+1 − Tt+kα̂t+k)′Ω−1
t+kTt+k(αt+k − α̂t+k)

−1
2
(αt+k − α̂t+k)′T ′

t+kΩ
−1
t+kTt+k(αt+k − α̂t+k), (4)

where l′(θs) = ∂l(θs)/∂ds, and l′′(θs) = ∂2l(θs)/∂d2
s.

We write log g to denote the right hand side of equation (4). Then, the normalized version

of g is a (k + 1) -dimensional normal density. To sample from this density, we must correct the

definition of artificial variables ŷs in Shephard and Pitt (1997) as follows. For s = t, . . . , t + k− 1

and s = n ,

ŷs = zsα̂s + vsl
′(θ̂s), (5)

where

vs = −1/l′′(θ̂s), (6)

and for s = t + k < n ,

ŷs = vs

[
z′s

{
l′(θ̂s) − l′′(θ̂s)zsα̂s

}
+ T ′

sΩ
−1
s αs+1

]
, (7)

where

vs =
[
T ′

sΩ
−1
s Ts − l′′(θ̂s)z′szs

]−1
. (8)

For the last block, i.e. t+k=n, αt+k+1 is removed from the condition of the left-hand-side of

equations (3) and (4). Hence, ŷn is defined by equation (5) instead of equation (7). Shephard and

Pitt (1997) define ŷs for all s by equation (5) because they omit the last term in equation (3).

Then, consider the following linear Gaussian model .

ŷs =




zsαs + εs, for s = t, . . . , t + k − 1 and s = n,

αs + εs, for s = t + k < n,

αs+1 = Tsαs + Hsus, for all s,

where εs ∼ NID(0, vs) and us ∼ NID(0, I) . Notice that Sampling from g is the same as

sampling (ut−1, . . . , ut+k−1) given αt−1 and (ŷt, . . . , ŷt+k) in the above model, which is possible

by using the de Jong and Shephard (1995) simulation smoother.
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For the other procedures, we may simply follow Shephard and Pitt (1997). The Metropolis-

Hastings acceptance-rejection algorithm with g as a proposal density can be used to sample from

the true density f given by equation (3). The values for θ̂s ’s around which the Taylor expansion

is conducted are selected as the mode of the conditional density for θs ’s, which can be found

by using the moment smoother. We divide {α1, . . . , αn} into K + 1 blocks, (αki−1+1, . . . , αki
)′,

i = 1, . . . ,K + 1 with k0 = 0, kK+1 = n . K knots, (k1, . . . , kK) , are selected randomly such

that

ki = int[n × (i + Ui)/(K + 2)], i = 1, . . . ,K,

where Ui ’s are independent uniform random variables on (0, 1).

3 Illustration using Stochastic Volatility Model

To examine the performance of the original Shephard and Pitt (1997) method and the correct one

explained in the previous section, we analyze the following stochastic volatility model.

yt = εtβ exp(αt/2), εt ∼ NID(0, 1), (9)

αt+1 = φαt + ηt, ηt ∼ NID(0, σ2
η), (10)

α1 ∼ N(0, σ2
η/(1− φ2)).

for t = 1, . . . , 1000.

We simulate {y1, . . . , y1000} from the above model and, using this simulated data, estimate

parameters (β, ση, φ) as well as latent variables {α1, . . . , α1000} . Following Shephard and Pitt

(1997), we use two parameter settings. One is (β, φ, σ2
η) = (1, 0.9, 0.1) , and the other is (β, φ, σ2

η) =

(1, 0.99, 0.01) . We call the data simulated under the former parameter setting as “weekly data” and

the data simulated under the latter parameter setting as “daily data” because the former is typical

of weekly financial returns data and the latter is typical of daily financial returns data. For the

parameters, we adopt the same prior as used in Shephard and Pitt (1997). For the number of knots,

we use K = 10, 20, 50, 100 . We can expect that the original Shephard and Pitt (1997) multi-move

sampler performs worse with the number of knots because it omits the last term in equation (3)
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every block except the last block in which the last term in equation (3) is not present. Notice that

the original Shephard and Pitt (1997) multi-move sampler becomes correct when K = 0 .

For the above stochastic volatility model, the correct definition of artificial variables is as follows.

For s = t, . . . , t + k − 1 and s = n ,

ŷs = α̂s + vsl
′(θ̂s),

where

vs =
2β2

y2
s

exp(α̂s) and l′(θ̂s) =
1
2

{
y2

s

β2
exp(−α̂s) − 1

}
,

and for s = t + k < n ,

ŷs = vs

[{
l′(θ̂s) − l′′(θ̂s)α̂s)

}
+ φσ−2

η αs+1

]
,

where

vs =
(
φ2σ−2

η − l′′(θ̂s)
)−1

.

The initial 1000 iterations are discarded to avoid the so-called “burn-in” period and the following

n = 10000 iterations are recorded. Table 1 summarizes estimation results for the parameters and

the middle state α500 . This table reports the posterior means, the 95% intervals, the standard

errors of the posterior means, and the p-values for convergence diagnostic (CD) statistics. The

posterior means are computed by averaging the simulated draws. The 95% intervals are calculated

using the 2.5th and 97.5th percentiles of the simulated draws. The standard errors of the posterior

means are computed using a Parzen window with a bandwidth of 1000. Geweke (1992) suggests

assessing the convergence of the MCMC by comparing values early in the sequence with those late

in the sequence. Let X(i) be the i th draw of a parameter in the recorded 10000 draws, and let

X̄A = 1
nA

∑nA
i=1 X(i) and X̄B = 1

nB

∑10000
i=10001−nB

X(i). Using these values, Geweke (1992) proposes

the following statistic called convergence diagnostics (CD).

CD =
X̄A − X̄B√

σ̂2
A/nA + σ̂2

B/nB

, (11)

where
√

σ̂2
A/nA and

√
σ̂2

B/nB are standard errors of X̄A and X̄B . If the sequence of X(i) is

stationary, it converges in distribution to the standard normal. We set nA = 1000 and nB = 5000

and compute σ̂2
A and σ̂2

B using Parzen windows with bandwidth of 500.
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According to the p-values for CD statistics, the null hypothesis that the sequence of 10000

draws is stationary is accepted at any standard level for all parameters. On one hand, the results

based on the correct multi-move sampler are stable irrespective of the number of knots. The 95%

intervals for all parameters and α500 include the true values for all K . On the other hand, as

expected, the original multi-move sampler performs worse with the number of knots. Specifically,

the estimates for φ decrease and the estimates for ση increase with the number of knots. For the

weekly data, the 95% intervals for φ are below the true value and those for ση are above the true

value when K = 50 and K = 100 . For the daily data in which shocks to state variables αt are

highly persistent ( φ = 0.99 ), the performance of the original multi-move sampler is much worse.

For all K , the 95% intervals for φ and ση do not include the true values.

Figures 1 and 2 plot the estimates for αt along with the true values. The estimates based on

the original multi-move sampler are more volatile than those on the correct one. The estimates

based on the original one become more volatile with the number of knots while those on the correct

one are stable. Table 2 shows the root mean square error (RMSE) of the estimates for αt , i.e.

RMSE =

√√√√ 1
1000

1000∑
t=1

(at − αt)
2

where at is the posterior mean of αt . The RMSEs based on the original multi-move sampler

increase with the number of knots while those on the correct one are stable.

4 Conclusion

This note pointed out a problem in the multi-move sampler proposed by Shephard and Pitt (1997)

and corrected their method. The performance of the original Shephard and Pitt (1997) sampler and

our correct sampler was examined by estimating stochastic volatility models using simulated data.

The results demonstrated that our correct sampler performs well irrespective of the number of knots

while the original sampler performs worse with the number of knots. The correction explained in

this note is important especially when shocks to state variables are highly persistent because, in

such a case, the original sampler may yield a significant bias even though the number of knots is

small.
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Table 1. Estimation Results for Parameters and α500

(a) Weekly Data ( β = 1 , φ = 0.9 , σ2
η = 0.1 , α500 = −0.6819 )

Correct Original

Mean 95% Interval S.E. p-value Mean 95% Interval S.E. p-value

K=10

β 0.9705 [0.8533, 1.1059] 0.0032 0.86 0.9527 [0.8619, 1.0469] 0.0015 0.76

φ 0.9220 [0.8690, 0.9628] 0.0016 0.58 0.8658 [0.7831, 0.9249] 0.0028 0.85

ση 0.2489 [0.1816, 0.3284] 0.0034 0.62 0.3549 [0.2683, 0.4676] 0.0049 0.62

α500 -0.3676 [-1.1838, 0.5066] 0.0082 0.01 -0.2570 [-1.2059, 0.7816] 0.0087 0.61

K=20

β 0.9656 [0.8466, 1.0802] 0.0019 0.26 0.9431 [0.8563, 1.0287] 0.0013 0.87

φ 0.9225 [0.8693, 0.9641] 0.0018 0.35 0.8304 [0.7265, 0.9038] 0.0030 0.82

ση 0.2480 [0.1769, 0.3325] 0.0041 0.23 0.4116 [0.3073, 0.5346] 0.0051 0.84

α500 -0.3569 [-1.1663, 0.5121] 0.0056 0.45 -0.2220 [-1.1965, 0.8456] 0.0074 0.57

K=50

β 0.9685 [0.8480, 1.0910] 0.0040 0.86 0.9408 [0.8689, 1.0149] 0.0009 0.78

φ 0.9268 [0.8748, 0.9645] 0.0013 0.82 0.7386 [0.5965, 0.8419] 0.0039 0.85

ση 0.2391 [0.1793, 0.3252] 0.0031 0.97 0.5147 [0.4054, 0.6462] 0.0048 0.69

α500 -0.3779 [-1.1665, 0.4605] 0.0111 0.39 -0.1428 [-1.2212, 1.0463] 0.0076 0.95

K=100

β 0.9656 [0.8420, 1.0854] 0.0044 0.23 0.9404 [0.8713, 1.0098] 0.0009 0.77

φ 0.9241 [0.8713, 0.9631] 0.0016 0.68 0.6382 [0.4709, 0.7670] 0.0039 0.84

ση 0.2429 [0.1793, 0.3209] 0.0033 0.60 0.5980 [0.4792, 0.7360] 0.0038 0.58

α500 -0.3600 [-1.1576, 0.4954] 0.0129 0.17 -0.0575 [-1.1970, 1.2111] 0.0070 0.69

NOTE: The first 1000 draws are discarded and then the next 10000 are used for calculating the posterior means, the 95% intervals, the

standard errors of the posterior means, and the p-values for convergence diagnostic (CD) statistics proposed by Geweke (1992). The

posterior means are computed by averaging the simulated draws. The 95% intervals are calculated using the 2.5th and 97.5th percentiles of

the simulated draws. The standard errors of the posterior means are computed using a Parzen window with a bandwidth of 1000. The CD

is computed using equation (11), where we set nA = 1000 and nB = 5000 and compute σ̂2
A

and σ̂2
B

using a Parzen window with bandwidth

of 500.
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(b) Daily Data ( β = 1 , φ = 0.99 , σ2
η = 0.01 , α500 = −0.5463 )

Correct Original

Mean 95% Interval S.E. p-value Mean 95% Interval S.E. p-value

K=10

β 1.0294 [0.8260, 1.3085] 0.0101 0.04 1.0158 [0.8641, 1.1524] 0.0037 0.05

φ 0.9839 [0.9665, 0.9962] 0.0005 0.31 0.9452 [0.8981, 0.9768] 0.0015 0.17

ση 0.1050 [0.0760, 0.1420] 0.0019 0.84 0.2119 [0.1552, 0.2799] 0.0031 0.11

α500 -0.2275 [-0.9160, 0.4489] 0.0216 0.02 -0.0169 [-0.7786, 0.7986] 0.0082 0.18

K=20

β 1.0094 [0.7642, 1.2193] 0.0076 0.55 1.0160 [0.9030, 1.1269] 0.0015 0.81

φ 0.9833 [0.9655, 0.9958] 0.0004 0.92 0.9081 [0.8405, 0.9563] 0.0019 0.70

ση 0.1052 [0.0774, 0.1405] 0.0015 0.59 0.2795 [0.2055, 0.3762] 0.0036 0.69

α500 -0.1872 [-0.8158, 0.4990] 0.0168 0.40 0.0292 [-0.8368, 0.9506] 0.0058 0.07

K=50

β 0.9944 [0.7372, 1.2396] 0.0180 0.98 1.0198 [0.9365, 1.1044] 0.0011 0.52

φ 0.9841 [0.9660, 0.9963] 0.0006 0.77 0.8185 [0.7107, 0.8969] 0.0024 0.39

ση 0.1053 [0.0796, 0.1452] 0.0016 0.49 0.3912 [0.3106, 0.4870] 0.0032 0.45

α500 -0.1548 [-0.8208, 0.5633] 0.0385 0.97 0.0121 [-1.0141, 1.1156] 0.0079 0.33

K=100

β 1.0019 [0.7941, 1.2176] 0.0217 0.01 1.0276 [0.9549, 1.0982] 0.0008 0.62

φ 0.9846 [0.9677, 0.9960] 0.0005 0.65 0.7082 [0.5450, 0.8272] .0034 0.39

ση 0.1036 [0.0783, 0.1346] 0.0016 0.73 0.4656 [0.3681, 0.5933] 0.0037 0.27

α500 -0.1826 [-0.8219, 0.5085] 0.0439 0.03 -0.0171 [-1.0927, 1.1470] 0.0045 0.37

NOTE: The first 1000 draws are discarded and then the next 10000 are used for calculating the posterior means, the 95% intervals, the

standard errors of the posterior means, and the p-values for convergence diagnostic (CD) statistics proposed by Geweke (1992). The

posterior means are computed by averaging the simulated draws. The 95% intervals are calculated using the 2.5th and 97.5th percentiles of

the simulated draws. The standard errors of the posterior means are computed using a Parzen window with a bandwidth of 1000. The CD

is computed using equation (11), where we set nA = 1000 and nB = 5000 and compute σ̂2
A and σ̂2

B using a Parzen window with bandwidth

of 500.
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Table 2. Root Mean Square Error of State Variables Estimates

Weekly Daily

K Correct Original Correct Original

10 0.4727 0.4724 0.2781 0.2871

20 0.4735 0.4786 0.2745 0.3049

50 0.4750 0.4967 0.2758 0.3404

100 0.4748 0.5207 0.2739 0.3812

NOTE: The table shows the root mean square error

RMSE =

√√√√ 1

1000

1000∑
t=1

(at − αt)
2

where at is the posterior mean of αt.
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