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Abstract

We discuss the problem of measuring financial risk and propose to use some dynamic

risk measures when the underlying assets prices follow the continuous diffusion pro-

cesses and the non-linear discrete time series. We shall develop a general procedure to

estimate the dynamic conditional tail expectation approximately by using the asymp-

totic expansion approach via the Malliavin-Watanabe Calculus. Then we discuss some

statistical problems of measuring dynamic risk from a set of discrete time series data.

Key Words

Financial Risk Measures, Dynamic VaR, Dynamic Tail Conditional Expectation, Ap-

proximate DTCE, Asymptotic Expansion Approach, SSAR Risk Management

∗This preliminary memorandum has been prepared as a summary of my talk at the conference on
”Statistical Aspects of Insurance and Finance” to be held at Faculty of Economics, University of Tokyo
in February 2002. I thank Mr. Tomoyuki Ichiba for useful discussions on the related problem. Please
do not cite this memorandum without any special permission because it is a preliminary note.

†Faculty of Economics, University of Tokyo, Bunkyo-ku 7-3-1, Tokyo 113-0033, JAPAN.

1



1 Introduction

In the past decade the statistical method of measuring financial risk has been developed

and extensively used in finance. It has been not only important in financial industries

and their regulations, but also interesting in academic point of view on the statistical

analysis of financial risk. Among several methods proposed including credit risk and

others, the method of VaR (Value at Risk) has been the most important one partly

because the BIS and central banks in many advanced countries have adopted the guid-

lines based on the VaR method for regulating the banking sector. See J.P. Morgan

(1996) and Jorion (2000) on the details of the standard statistical as well as practical

aspects of the VaR method in financial industries, for instance.

The main purpose of this study is to reconsider one important issue of measuring

financial risk in the dynamical portfolio managemants and the regulations on financial

risk control. The standard practice of measuing financial risk has been often static in

the sense that the risk measures proposed are those at a paticular given period. In

practice, however, the private financial corporations are conducting business in certain

horizon of investments including asset allocations, derivative tradings and portfolio

managements. Hence apparently there are some basic questions whether the well-

known practical methods in financial industries and regulatory authorities are valid in

the actual dynamic financial markets. We shall discuss some aspects of dynamic risk

measures which could be different from the static ones and propose a new procedure of

measuring dynamical financial risks in this respect. We are trying to propose some fi-

nancial risk measures and risk control method which can be consistent in the dynamical

point of view.

In the general case when the underlying asset prices follow a set of multidimensional

diffusion processes, however, it is quite difficult to estimate the dynamic financial risk

measures in the exact sense. It is partly because the distributions of the underlying

assets of portfolios and their sample paths are quite complicated and the volatility of

asset prices should not be treated as constants over time for practical point of view. In

addition to these aspects, the discount rates such as the spot interest rates for evaluating

the asset prices in the future dates should not be constant and their movements over

time should be treated at the same time. In order to handle this general situation,

we shall develop a procedure to estimate the dynamic risk measures approximately by

using the asymptotic expansion approach, which has been developed by Kunitomo and

Takahashi (1998, 2001), and Kunitomo and Kim (2001). We shall give some explicit

formulae which are useful for calculating dynamical financial risk. Our method is

based on the Malliavin-Watanabe Calculus, which is a powerful theory as the infinite

dimensional stochastic analysis, and Yoshida (1992) was a pioneering work in this field
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of applications.

The second purpose of this study is to develop the statsitical risk management

method, which is called the SSAR (simultaneous swiching autoregressive) method. In

the statistical analysis of financial data, there have been some evidences that the non-

stationarity, time dependence, non-Gaussianity, and asymmetry of asset distributions

should not be ignored. We shall propose to handle these aspects at the samte time by

using a relatively simple non-linear time series model called the class of SSAR models.

The SSAR modeling has been developed by Kuniomo and Sato (2000, 2001) in the

statistical non-linear time series analysis. In addition to the theoretical developments,

we shall examine the conventional VaR methodology commonly used by conducting

a set of similations and compare it with the SSAR modeling by investigating real

examples.

2 Dynamic Risk Measures

We consider the general framework of measuring dynamic financial risks in financial

maekets. Let

V (t) =
n∑

i=1

πi(t)Si
t(2.1)

be the non-negative value of a portfolio at time t consisting of n assets with the prices

Si
t (i = 1, · · · , n) and πi(t) be the share of the i-th asset at t. We assume that the

investment horizon of portfolio is finite (0 ≤ t ≤ T ) and the i-th asset price Si
t follows

the stochastic differential equation

dSi
t = Si

t[bi(t, ω)dt+
d∑

j=1

σi
j(t, ω)dB

j
t ] (i = 1, · · · , n),(2.2)

where bi(t, ω) are the drift terms, {σi
j(t, ω)} are the volatility functions, and Bj

t (j =

1, · · · , d) are the standard Brownian motions.

We assume that n ≥ 1, d ≥ 1 and the strategies πi(t) (i = 1, · · · , n) satisfy the

self-financing condition

dV (t) =
n∑

i=1

πi(t)dS i
t .(2.3)

Then by using (2.2) this equation can be re-written as

dV (t) = V (t)[b(t)dt+
d∑

j=1

σj(t)dB
j
t ] ,(2.4)
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where

b(t) =
n∑

i=1

bi(t)[πi(t)
Si

t

V (t)
] ,(2.5)

and

σj(t) =
n∑

i=1

[
πi(t)Si

t

V (t)
]σi

j(t) (j = 1, · · · , d).(2.6)

We give two examples of our formulation. The first one is the simplest case, but it

highlights the problem of measuring dynamic financial risks. The second one is the

familiar formulation of the financial derivative pricing in the Black-Scholes theory.

Example 1: We take n = d = 1 and V (t) = St . The price of the asset St follows the

geometric Brownian motion defined by

dSt = St[b(t)dt+ σ(t)dBt] ,(2.7)

where b(t) and σ(t) are some deterministic functions of time with t ∈ [0, T ] .

Example 2: We take n = d+1 and the first asset is the safe asset whose price process

follows

dS1
t = r(t)S1

t dt ,(2.8)

where r(t) is the instantaneous spot interest rate at time t. This case can be a special

case when we take b1(t) = r(t), σ1
j (t) = 0 (j = 1, · · · , d), and

π1(t)S1
t = V (t)−

n∑
i=2

πi(t)Si
t .

This example is the extended Black-Scholes model which has been often used for pricing

financial derivatives.

Now we are trying to measure the dynamic financial risks when the underlying price

processes follow the continuous diffusions. We shall first extend the standard definition

of the Value-at-Risk (VaR) concept into the one in the dynamic framework.

Definition 1 : The dynamic Value at Risk with 100α% (DV aRα) is defined by

DV aRα = V (0)−Aα such that

1− α = P

(
ω| min

0≤t≤T

V (t)
A(t)

> 1
)

,(2.9)

where the floor function is given by A(t) = Aαe
∫ t

0
r(s)ds and r(s) is the discount rate at

t.
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Here V (0) is the initial value of portfolio and V (0)−Aα corresponds to the standard

VaR value in the static setting if we have used 1− α = P (V (T ) > A(T )) . We usually

use the spot interest rate in the finanicial markets as the discount rate.

It is important to notice that contrary to the standard VaR formulation we have the

situation such that there are some points of time V (t) < A(t) and

V (T ) > A(T ) = Aαe
∫ T

0
rsds(2.10)

at the same time. Then we need to use some risk measures to control the financial risks

in the dynamic setting. We define the dynamic TCE (tail conditional expectation)

value or the expected shortfall as follows.

Definition 2 : The dynamic TCEα with 100%α are defined by

DTCEα = E[e−
∫ T

0
r(s)ds[A(T )− V (T )]I({A(T )≥ V (T )})|CT ](2.11)

and

DTCE∗
α = E[[V (0)− e−

∫ T

0
r(s)dsV (T )]I({A(T )≥ V (T )})|CT ] ,(2.12)

where I( · ) is the indicator function and the set CT in the conditional expectation

operator is defined by

CT = {ω| min
0≤t≤T

V (t)
A(t)

> 1}c .(2.13)

The DTCE measures are natural generalizations of the standard TCE measures dis-

cussed by Artzner et. al. (1999) and Jaschke (2001) extensively. From our definition

the DTCEα can be rewritten as

DTCEα = Aα − 1
α
E[e−

∫ T

0
r(s)dsV (T )I({A(T )≥ V (T )})|CT ] ,

and then we have the relation between two dynamic risk measures as

DTCE∗
α = DTCEα +DV aRα .(2.14)

We notice that if we take V (0) > Aα and the underlying market is complete, then

DTCEα = 0 when we take the perfect hedging strategy in Example 2 as we have ex-

pected from the standard derivative pricing theory. However, if the underlying financial

market is incomplete and we can not use the perfect hedging strategy, then DTCEα

should be positive for any 0 < α < 1 .

Now we consider the simple situation of Example 1. We shall use the following Lemma,

which is the first part of Corollary 2.1 of Kunitomo and Ikeda (1992). For the sake

of completeness we shall state the modified version of Theorem 2.1 of Kunitomo and

Ikeda (1992) in the Appendix.
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Lemma 1 : Let St be the continuous process satisfying (2.7) when b(t) = b, σ(t) = σ

and r(s) = r (b, σ and r are real constants). Then

P

(
min

0≤t≤T

V (t)
A(t)

> 1 , S(T ) ∈ I ⊂ [A(T ),+∞)
)

(2.15)

=
∫

I
{φ(ln y; lnS0 + (b− σ2

2
)T, σ

√
T )

−( A
S0
)

2(b−r−σ2/2)

σ2 φ(ln y; ln
A2

S0
+ (b− σ2

2
)T, σ

√
T )}1

y
dy ,

where A(t) = Aert and φ(z; c1, c2) is the density function of the normal distribution

N (c1, c2) .

By using this Lemma, we can set Aα such that

1− α = P

(
ω| min

0≤t≤T

V (t)
A(t)

)
(2.16)

=
∫ ∞

lnA(T )
{φ(z; lnS0 + (b− σ2

2
)T, σ

√
T )

−( A
S0
)

2(b−r−σ2/2)

σ2 φ(z; ln
A2

S0
+ (b− σ2

2
)T, σ

√
T )}dz

= Φ[
lnS0 − lnAα + (b − r − σ2

2 )T

σ
√
T

]

−(Aα

S0
)

2(b−r−σ2/2)

σ2 Φ[
− lnS0 + lnAα + (b− r − σ2

2 )T

σ
√
T

] ,

where Φ(·) is the distribution function of the standard normal random variable. Then

we have the following result.

Theorem 1 : Let St be the continuous process satisfying (2.7) when b(t) = b, σ(t) = σ

and r(s) = r (b, σ and r are real constants). Then the DTCEα is given by

DTCEα = Aα − 1
α
S0e

(b−r)TΦ[
ln(Aα/S0)− (b− r + σ2/2)

σ
√
T

] .(2.17)

There has been an important concept of the coherent risk measures (CRM), which

was introduced and discussed by Artzner et. al. (1999) and Jaschke (2001). (See

Kusuoka (2000) for the related problem.)

Let ρ( · ) be a CRM satisfying Axioms of Artzner et. al. (1999) except Axiom T. In

the dynamic setting we are interested in we need to modify Axiom T of CRM as

ρ(X(T ) + c e
∫ T

0
r(s)ds) = ρ(X(T ))− c(2.18)

for any positive constant c, where X(T ) is a functional of the underlying Brownian

motions in [0, T ] and r(t) is the spot interest rate at t. When r(s) = r for all s, it is

obvious that DTCEα we have introduced is one of CRM.
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Except the special case of Example 1, it is difficult to obtain the explicit formulae

of DTCE when the underlying asset prices follow the multi-dimensional diffusions in

the general cases. Then in the next section we shall develop a method of estimating

DTCE approximately by using the asymptotic expansion approach.

3 Asymptotic Expansion Method for Risk Measures

We shall develop the asymptotic expansion method called the small disturbance asymp-

totics for estimating the dynamic risk measures in the general case. For this purpose

we introduce some notations in this section. Let S(δ)
t = (S(δ)i

t ) (i = 1, · · · , n; 0 < t ≤ T )

be the prices of the underlying securities at t with a parameter 0 < δ ≤ 1 . We consider

the situation that this security pays no dividends and the price process follows the

stochastic differential equation :

S
(δ)i
t = Si

0 +
∫ t

0
S(δ)

s b(δ)i
s ds+

∫ t

0
S(δ)i

s

d∑
j=1

σ(δ)ij
s dBj

1s ,(3.19)

where b
(δ)
t = (b(δ)i

t ) are the drift coefficients, and σ
(δ)ij
t are the instantaneous volatility

at t with the parameter 0 < δ ≤ 1 and B1t = (Bj
it) are the set of d independent

Brownian motions. We assume that the non-negative stochastic process σ
(δ)ij
s follows

the stochastic differential equation :

σ(δ)ij
s = σ

ij
0 +

∫ s

0
µij

σ (σ
(δ)
u , u, δ)du+ δ

∫ s

0
wij

σ (σ
(δ)
u , u)dBij

2u ,(3.20)

where B2t = (Bij
2t) are the set of n × d Brownian motions. For the interest rate

processes, we assume that there exists a locally riskless money market 1 and the money

market account (accumulation factor) is given by M (ε)(t) = exp(
∫ t
0 r

(ε)
s ds) , where ε is

a parameter with 0 < ε ≤ 1 . We assume that the non-negative (instantaneous) spot

interest rate process r
(ε)
t , which is consistent with the money market and the discount

bond markets, follows the stochastic differential equation :

r(ε)
s = r0 +

∫ s

0
µr(r(ε)

u , u, ε)du+ ε

∫ s

0
wr(r(ε)

u , u)dB3u ,(3.21)

where B3t is the standard Brownian motion. In (3.19)-(3.21) we consider the general

situation when three sets of Brownian motions are correlated and their instantaneous

1 Implicitly we are considering the situation when there also exist bond markets in the economy
and let P (ε)(s, t) (0 ≤ s ≤ t ≤ T ) be the discount bond price at s with the maturity date t . As the
simplest case we have the situation when all discount bond prices P (ε)(s, t) (0 ≤ s ≤ t ≤ T ) are solely

determined by the single factor {r(ε)
t }. However, we can also formulate HJM term structure of interest

rates model in which the spot interest rate is not necessarily a Markovian process. See Kunitomo and
Takahashi (2001), and Section 5.2 of Kunitomo and Kim (2001) for the details.
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correlations are given by

E
[
dBi,jk

t dBi,jk′
t

]
=


 1 ρi,jk

σ ρi
r

ρi,jk
σ 1 ρjk

σr

ρi
r ρjk

rσ 1


 dt ,(3.22)

where we denote dBi,jk
t = (dBi

1t, dB
jk
2t , dB3t)′ .

By using the above notations we write the portfolio value process V (δ)(t) as

V (δ)(t) =
n∑

i=1

π(ε,δ)i
s S

(δ)i
t(3.23)

and

V (δ)(t) = V (0) +
∫ t

0

n∑
i=1

π(ε,δ)i
s dS

(δ)i
t ds(3.24)

where π
(ε,δ)i
t is the quantity of asset S(δ)i

t in the portfolio at t. We make the following

assumption for the resulting simplicity of our analysis.

Assumption I : The drift functions b(δ)i
t (i = 1, · · · , n) and relative share functions

for the assets i (= 1, · · · , n)
θ
(ε,δ)i
t =

π
(ε,δ)i
t S

(δ)i
t

V (δ)(t)

are given by

b
(δ)i
t = bi

t + op(δ) , θ
(ε,δ)i
t = θi

s + op(ε, δ) ,(3.25)

where bi
t and θi

s (i = 1, · · · , n) are the deterministic functions of time t.

We shall analyze the effects of the stochastic volatility and the stochastic interest

rates on the financial risk measures when both ε and δ are small. In order to develop

the asymptotic expansion approach when both δ and ε are small, we need to have some

regularity conditions for that the solutions of (3.19)-(3.21) are well-behaved and the

stochastic expansions of the stochastic processes {r(ε)
t } and {σ(δ)

t } can be allowed.

Assumption II : Let S
(δ)
t , σ

(δ)
t and r

(ε)
s be the set of diffusion processes with re-

spect to the filtered probability space (Ω,F , {Ft}t∈[0,T ], P ) which satisfy (3.19)-(3.21).

(i) The drift functions µr(r
(ε)
t , t, ε), µij

σ (σ
(δ)
t , t, δ) and the diffusion functions

wr(r
(ε)
t , t), wij

σ (σ
(δ)
t , t) are Ft-measurable, bounded, and Lipschitz continuous with re-

spect to their first arguments. Also there exist a finite K1 such that∫ T

0
[r(ε)

s +
1
2
‖σ(δ)

s ‖2]ds ≤ K1 .(3.26)
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(ii) The drift functions are continuously twice differentiable and their first and second

derivatives are bounded uniformly in ε and δ . The volatility functions are continuously

differentiable and their first derivatives are bounded uniformly in ε and δ.

(iii) For any 0 < t ≤ T and any i (= 1, · · · , d) we have
∫ t

0

n∑
i,i′=1

d∑
j=1

θi
sθ

i
′

s σij
s σi

′
j

s ds > 0 ,(3.27)

where σij
s are the solution of the ordinary differential equation

σij
t = σij

0 +
∫ t

0
µij

σ (σs, s, 0)ds .(3.28)

Assumption III : There exists a positive c (0 < c < ∞) such that

lim
ε,δ→0

δ

ε
= c .(3.29)

Under Assumption II we have the existence of the unique strong solution for {S(ε,δ)
t },

{σ(δ)
t } and {r(ε)

t } satisfying the SDEs in (3.19)-(3.21) by using the standard results in
Section IV of Ikeda and Watanabe (1989). The conditions in Assumptions I-III are quite

strong and could be relaxed considerably. In any case, however, we need some conditions

to assure the boundedness of risk measures. For the purpose of practical applications

we need some approximation arguments to deal with the stochastic processes including

the well-known non-negative interest rates and volatility processes.

In the rest of this section, we shall investigate the asymptotic behavior of the fort-

folio value process in the situation when ε ↓ 0 and δ ↓ 0 . We shall drive the explicit

form of V (δ)(t) and

A(ε)(t) = Aαe
∫ t

0
r
(ε)
s ds(3.30)

for any 0 ≤ t ≤ T in the small disturbance asymptotic approach. Let

D(ε)
r (t) =

1
ε
[r(ε)

t − rt] ,(3.31)

where rt = r
(0)
t is the solution satisfying the ordinary differential equation

rt = r0 +
∫ t

0
µr(rs, s, 0)ds .(3.32)

By substituting r
(ε)
t = rt + εD

(ε)
r (t) into (3.32), we have

εD(ε)
r (t) =

∫ t

0

{
[µr(rs + εD(ε)

r (s), s, ε)− µr(rs, s, ε)] + [µr(rs, s, ε)− µr(rs, s, 0)]

}
ds

+ε

∫ t

0
wr(rs + εD(ε)

r (s), s)dB3s .(3.33)
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Then by using Assumption II, we can find positive constants c1 and c2 such that for

any t

|D(ε)
r (t)| ≤

∫ t

0
[c1|D(ε)

r (s)|+ c2]ds+ |
∫ t

0
wr(rs + εD(ε)

r (s), s)dB3s| .(3.34)

Also by using the standard arguments in stochastic analysis, the martingale inequality,

and the Grownwall inequality, we can find positive constants c3 and c4 such that

E[|D(ε)
r (t)|2] ≤ c3e

c4t , E[ sup
0≤t≤T

|D(ε)
r (t)|2] < +∞(3.35)

uniformly with respect to ε . Hence we confirm the convergence in probability that

r
(ε)
t → rt uniformly with respect to t as ε ↓ 0 .

Let

E(ε)
r (t) =

1
ε2
[r(ε)

t − rt − εDr(t)] ,(3.36)

where Dr(t) = p limε↓0 D
(ε)
r (t) . Then by substituting r

(ε)
t = rt+ εDr(t) + ε2E

(ε)
r (t) into

(3.21), we can use a similar argument recursively to lead that E[|E (ε)
r (t)|2] is bounded

uniformly with respect to t and ε and we have the uniform convergence of D(ε)
r (t) to

Dr(t) with respect to t as ε ↓ 0 in probability. We need similar arguments on the

existence and convergence of random variables Dr(t), which we have omitted. By using

the above arguments under Assumption I, the stochastic expansion of the instantaneous

interest rate r
(ε)
t can be expressed by

r
(ε)
t = rt + ε Dr(t) +R1(3.37)

as ε ↓ 0, where the remainder term R1 is in the order op(ε). Then by using (3.33) and

convergence arguments of its each terms, Dr(t) can be regarded as the solution of the

stochastic differential equation :

Dr(t) =
∫ t

0
[∂µr(rs, s, 0)Dr(s) + ∂εµr(rs, s, 0)]ds+

∫ t

0
wr(rs, s)dB3s ,(3.38)

where we denote

∂µr(rs, s, 0) =
∂µr(r

(ε)
s , s, ε)

∂r
(ε)
s

∣∣∣∣
r
(ε)
s =rs,ε=0

,(3.39)

and

∂εµr(rs, s, 0) =
∂µr(r

(ε)
s , s, ε)
∂ε

∣∣∣∣
ε=0

.(3.40)

In order to have a concise representation for Dr(t), let Y r
t be the solution of dY r

t =

∂µr(rt, t, 0)Y r
t dt with the initial condition Y r

0 = 1. Then (3.38) can be solved as

Dr(t) =
∫ t

0
Y r

t (Y
r
s )

−1[wr(rs, s)dB3s + ∂εµr(rs, s, 0)ds] .(3.41)
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Similarly, under Assumptions II and III we can expand the integral equation (3.20)

with respect to δ . By using the same argument as r(ε)
t , the stochastic expansion of the

stochastic volatility σ
(δ)ij
t can be also expressed by

σ
(δ)ij
t = σij

t + δ Dij
σ (t) + R2(3.42)

as δ ↓ 0 , where the leading term σ
ij
t are the solution of the ordinary differential

equation (3.23), the second term is given by Dij
σ (t) = p limδ↓0 D

(δ)ij
σ (t) with D

(δ)
σ (t)(=

[σ(δ)
t −σt]/δ), and the remainder term R2 is of the order op(δ). Let Y

(σ)ij
t be the solution

of dY (σ)ij
t = ∂µij

σ (σt, t, 0)Y
σij
t dt with the initial condition Y

(σ)ij
0 = 1. Then because

Dij
σ (t) is the solution of the corresponding stochastic differential equation as (3.38) for

{σ(δ)
t }, we can express Dij

σ (t) as

Dij
σ (t) =

∫ t

0
Y

(σ)ij
t (Y (σ)ij

s )−1[wij
σ (σs, s)dB

ij
2s + ∂δµij

σ (σs, s, 0)ds] ,(3.43)

where ∂wij
σ (σs, s, 0) and ∂δµij

σ (σs, s, 0) are defined in the same ways as (3.39) and (3.40).

Now we summarize the asymptotic behavior of the discounted portfolio process V (δ)(t)

A(ε)(t)

as ε ↓ 0 and δ ↓ 0 in the next proposition. The proof is similar to Section 6 of Kunitomo
and Kim (2001).

Lemma 2 : (i) Under Assumptions I, II and III,

sup
0≤s≤t≤T

|V
(δ)(t)

A(ε)(t)
− V (t)

A(t)
| → 0 (a.s.),(3.44)

and
V (t)
A(t)

=
V (0)
Aα

exp{
∫ t

0

n∑
i=1

d∑
j=1

θi
sσ

ij
s dBj

1s +
∫ t

0

n∑
i=1

µsds− 1
2
σ(t)2}(3.45)

as ε ↓ 0 and δ ↓ 0, where µs =
∑n

i=1 θ
i
sb

i
s − rs , σ(t)2 =

∫ t
0

∑n
i,i

′
=1

∑d
j=1 θ

i
sθ

i
′

s σ
ij
s σi

′
j

s ds ,

and {rt} and {σt} are the solutions of the ordinary differential equations (3.32) and

(3.28).

(ii) Let σMC [V (δ)(t)] be the Malliavin covariance of the discounted portfolio value pro-

cess and V
(δ)
t ∈ D∞(R) 2 . Then we have

sup
0≤s≤t≤T

|σMC[V (δ)(s)]− V 2
s

∫ s

0
σ2

udu| → 0 (a.s.)(3.46)

as δ ↓ 0 .

2 Let the H-differentiation be defined by DFh(w) = limε→0(1/ε)[F (w+εh)−F (w)] for a Wiener func-
tional F (w) and h ∈ M, where M is the Cameron-Martin subspace of the squared integrable functions
in the Wiener space W. Then the Malliavin covariance is given by σMC(F ) =< DF (w),DF (w) >H ,
where < · >H is the inner product of M space. We need some stronger conditions than Assumption I
for the class D∞(R) . See Theorem 3.1 of Kunitomo and Takahashi (1998) for the details.
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Next we shall derive the asymptotic expansion of the discounted portfolio value

process e−
∫ t

0
r
(ε)
s dsV (δ)(t) as ε ↓ 0 and δ ↓ 0 . If we set the leading term as

Xt =
∫ t

0

n∑
i=1

θi
s

n∑
j=1

σij
s dB

j
1s ,(3.47)

we can write

e−
∫ t

0
r
(ε)
s dsV

(δ)
t = V (0) exp

{[
Xt +

∫ t

0
µsds− σ(t)2

2

]
(3.48)

−ε

∫ t

0
Dr(s)ds+ δ


∫ t

0

n∑
i=1

d∑
j=1

Dij
σ (s)dB

j
1s −

∫ t

0

n∑
i=1

d∑
j=1

σij
s Dij

σ (s)ds


+R3

}
,

and

exp

[∫ T

0
r
(ε)
t dt

]
= exp

{∫ T

0
rsds+ ε

∫ T

0
Dr(s)ds+ R4

}
,(3.49)

where R3 and R4 are the remaining terms of higher orders. Then we can obtain a

stochastic expansion of the value process of the discounted portfolio at time t with

respect to ε and δ which can be summarized in the next lemma.

Lemma 3 : Under Assumptions I,II and III, an asymptotic expansion of the price

process of the security S
(ε,δ)
t at any particular time point t as ε → 0 and δ → 0 is given

by

e−
∫ t

0
r
(ε)
s dsV (δ)(t) = V (0) exp

{[
Xt +

∫ t

0
µsds− σ(s)2

2

]

+ ε[
Σ(r)

12 (t)
σ(t)2

X1t + λr(t)] + δΣ(σ)
12 (t)

[
X1t

2

σ(t)4
− X1t

σ(t)2
− 1

σ(t)2

]

+ δλσ(t)[
X1t

σ(t)2
− 1] +R5

}
,(3.50)

where we use the notations

Σ(r)
12 (t) = (−1)

∫ t

0

(∫ t

u
Y r

s ds

)
(Y r

u )
−1wr(ru, u, 0)

n∑
i=1

d∑
j=1

θi
uσ

ij
u ρj

rdu ,

λr(t) = (−1)
∫ t

0

(∫ t

u
Y r

s ds

)
(Y r

u )
−1∂εµr(ru, u, 0)du ,

Σ(σ)
12 (t) =

∫ t

0


∫ t

u

n∑
i,i

′
=1

θi
sθ

i′
s

d∑
j=1

σij
s Y (σ)ij

s ds


 (Y (σ)ij

u )−1wij
σ (σu, u)σi

′
j

s ρj
σdu ,

λσ(t) =
∫ t

0


∫ t

u

n∑
i,i

′
=1

d∑
j=1

θi
sθ

i
′

s σ
i
′
j

s Y (σ)ij
s ds


 (Y (σ)ij

u )−1∂δµij
σ (σu, u, 0)du

and R5 is the remainder term of the order op (ε, δ) .
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Under Assumptions I and II we can find positive constant c5 and c6 such that

E[V (δ)(t)] ≤ c5e
c6t , E[ sup

0≤t≤T
|V (δ)(t)|p] < +∞(3.51)

uniformly with respect to δ for any p ≥ 2. Also it is straightforward to show that

E[exp(c7(δ)‖Xt‖2))] is bounded for sufficiently small c7(δ) and E[exp{∫ T
0 σ

(δ)ij
s dBj

1s}]
are bounded for any δ and j (j = 1, · · · , d) . (See Section IV of Ikeda and Watanabe

(1989).)

We consider the asymptotic expansion of the theoretical value of the dynamic con-

ditional tail expectation (DTCE). We have found that this problem is quite similar to

the valuation problem of European put options developed by Section 3.2 of Kunitomo

and Kim (2001). We write the second term of the value of DTCE as

DTCEα = E
[
Z

(ε,δ)
T I(A(T )(ε) ≥ V (δ)(T ))|CT

]
(3.52)

where

Z
(ε,δ)
T = exp

(
−
∫ T

0
r
(ε)
t ds

)
V (δ)(T ) .

By substituting the relations of Lemma 3 into Z
(ε,δ)
T , we can obtain the expression for

Z
(ε,δ)
T as

Z
(ε,δ)
T = Z0 + δZδ

1 + εZε
1 +R6(3.53)

where

Z0 = V (0) exp

(
XT +

∫ T

0
µsds− 1

2
σ2(T )

)
,

Zδ
1 = Z0 ×

[
Σ(σ)

12 (T )
σ(T )2

(
X2

1T

σ(T )2
−X1T − 1

)
+ λσ(T )

(
X1T

σ(T )2
− 1

)]
,

Zε
1 = Z0 ×

{
Σ(r)

12 (T )
σ(T )2

X1T + λr(T )

}
,

and R6 is the remainder term of the order op(ε, δ). Hence we have reduced our problem

into the evaluation of the expectations as

DTCEα = E[Z0I(A(ε)(T ) ≥ V (δ)(T ))] +E[Zδ
1I(A

(ε)(T ) ≥ V (δ)(T ))]

+ E[Zε
1I(A

(ε)(T ) ≥ V (δ)(T ))] +E[R7I(A(ε)(T ) ≥ V (δ)(T ))] ,

where I( · ) is the indicator function. By the result of lengthy derivations as Section 6.3
of Kunitomo and Kim (2001), we finally have obtained the theoretical value of DTCE

as the next theorem.
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Theorem 2 : Under Assumptions I,II and III, an asymptotic expansion of the theo-

retical value of the DTCE when the interest rate and volatility are stochastic, is given

by

DTCEα =
[
Aα − V (0)

α
e
∫ T

0
µsdsΦ(−d1)

]

+ ε
V (0)
α

e
∫ T

0
µsds{[Σ

(r)
12 (T )
σ(T )2

(−d2 + σ(T )) +
λr(T )
σ(T )

]φ(d1)− [Σ(r)
12 (T ) + λr(T )]Φ(−d1)}

+ δ
V (0)
α

e
∫ T

0
µsds[

Σ(σ)
12 (T )
σ(T )3

(d2
2 − 1)− λσ(T )

σ(T )2
d2]φ(d1) + o(ε, δ)

as ε, δ ↓ 0, where Φ(·) is the distribution function of the standard normal variable and

φ(·) is its density function, d2 = d1 − σ(T ) , and

d1 =
1

σ(T )

[
log

V (0)
Aα

+
∫ T

0
µsds+

1
2
σ(T )2

]
,(3.54)

and Σ(r)
12 (T ),Σ

(σ)
12 (T ), λr(T ) and λσ(T ) are defined in Lemma 3.

Let the first term be DTCE0 and we set the coefficients of ε and δ to be DTCEr

and DTCEσ , respectively. Then the DTCE value can be decomposed into the first

term and the adjustment terms as

DTCEα = DTCE0 + εDTCEr + δ DTCEσ + o(ε, δ)(3.55)

where DTCE0 stands for the DTCE value under the assumptions of constant inter-

est rate and volatility. The second term represents the adjustment value induced by

the deterministic interest rate which in itself relies on the assumed interest rate and

volatility model. The third term and the fourth term are the adjustment values in-

duced by the stochastic interest rate and the stochastic volatility, respectively. Hence

our results include the result reported in Section 2 as special cases in the sense of the

small disturbance asymptotics.

There are some further considerations needed in implementing our procedure in

this section. First, in the general case it is not an easy task to estimate the DV aRα

value. One suggestion might be to calculate it by setting δ = ε = 0 and call it as

the approximate DVaR value and then we can calculate the approximate DTCE value.

Second, if we relax Assumption I and allow more complicated strategies of π(δ)i (i =

1, · · · , n), then Theorem 2 should be modified considerably.

4 The method of SSAR Risk Management

In this section we shall consider the method of measuring financial risk by using a class

of the simultaneous switching autoregressive (SSAR) models, which has been developed

14



by Kunitomo and Sato (2000, 2001). Because we shall use the discrete time setting, we

denote yi
t be the price of the i-th asset at time t.

Let

Vt =
n∑

i=1

πi
ty

i
t(4.56)

be the non-negative value ot a portfolio at time t consisting of n assets with the price

yi
t (i = 1, · · · , n) and πi

t be the share of the i-th asset at t. We assume that the

investment horizon of portfolio is finite (0 ≤ t ≤ T ) and the i-th asset price yi
t follows

a class of non-linear time series model

∆yi
t = Gσi(yi

t−1, · · · , yi
t−p, v

i
t, · · · , vi

t−r) (i = 1, · · · , n),(4.57)

where ∆yt = yt−yt−1, p and r are non-negative integers, Gσi( · ) are non-linear function
and {vi

t} are i.i.d. sequence of random variables with E[vi
t] = 0 and E[(vi

t)2] = 1 .

We assume that

(i) {yi
t, t = 0,+1, · · ·} satisfy the stochastic difference equation

∆yi
t = Gσi(ri

0 +
p∑

j=1

ri
jy

i
t−j + vi

t

√
hi

t) ,(4.58)

where Gσi(·) is a continuous (but not necessarily differentiable) function, ri
j (j =

0, 1, · · · , p) are unknown parameters, and
(ii) hi

t (≥ 1) are the volatility functions which are the Ft−1−measurable functions and
Ft−1 is the σ−field generated by the random variables {yi

s, v
i
s; s ≤ t− 1, i = 1, · · · , n} .

In our applications we shall use the ARCH model for {hi
t} which satisfies the stochastic

difference equation

hi
t = 1 +

r∑
j=1

αi
jh

i
t−jv

i 2
t−j ,(4.59)

where αi
j (i = 1, · · · , n; j = 1, · · · , r) are unknown parameters with αi

j ≥ 0 and∑r
j=1 α

i
j < 1 .

In particular we further assume that

(iii) Gσi(x) is a strictly increasing function satisfying

lim
x→∞

Gσi(x)
x

= σi
1 > 0 ,(4.60)

and

lim
x→−∞

Gσi(x)
x

= σi
2 > 0 ,(4.61)

where σi is the vector of unknown transformation parameters including σi
j (j = 1, 2)

appeared in (4.60) and (4.61).
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In the above formulation (4.58) is slightly different from many nonlinear time series

models including the threshold autoregressive (TAR) models developed by Tong (1990).

We shall be mainly interested in the time series movements which can be quite different

in the upward phase (∆yi
t ≥ 0) and the downward phase (∆yi

t < 0). Then (4.58) can

give a simple but rich way to represent the time series modelling with these two phases.

Because the transformation function Gσi(·) has some unknown parameters and the

random noise vi
t at t has not been realized at time t− 1, the phase (the upward phase

or downward phase, for instance) at time t is not determined in advance at time t− 1.

Also we shall be mainly interested in the case when the transformation function Gσi(·)
in (4.58) is not differentiable. See Kunitomo and Sato (2000, 2001) for the details of

the SSAR models.

It is possible to deal with the more general case on the volatility function such as the

Generalized ARCH models and the stochastic volatility models. See Bollerslev (1986),

Hamilton (1994), and Harvey and Shephard (1996), for instance. However, then the

estimation procedures become more complicated than the methods in Section 3.2, and

the estimated results sometimes become unstable in our limited experiences and we

shall not pursue these possibilities further.

In the discrete time setting we also restrict the portfolio strategies which are self-

financing in the financial literatures. Hence we impose the condition that
n∑

i=1

[πi
t−1 − πi

t]y
i
t−1 = 0 ∀t ∈ [1, T ].(4.62)

Then we have the representation of the portfolio at time T as

VT = V0 +
T∑

s=1

∆Vs(4.63)

= V0 +
T∑

s=1

n∑
i=1

πi
s−1∆yi

s ,

where ∆yi
t are determined by the stochastic difference equation (3.18).

Hence we can define the DV aRα and DTCEα in the discrete time setting as in Section

2. We define the dynamic VaR value as follows.

Definition 3 : The dynamic Value at Risk with 100%α (DV aRα) are defined by

DV aRα = V0 − Aα such that

1− α = P

(
ω| min

0≤t≤T

Vt

A(t)
> 1

)
(4.64)

where A(t) = Aαe
∑t−1

j=0
rs .
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Here V0 is the initial value of portfolio and V0 − Aα corresponds to the standard VaR

value in the static setting. We also define the dynamic TCE (tail conditional expecta-

tion) value or the expected shortfall as follows.

Definition 4 : The dynamic TCEα with 100%α are defined by

DTCEα = E[e−
∑t

s=0
rs [A(T )− VT ]I(A(T ) ≥ V (T ))|CT ](4.65)

and

DTCE∗
α = E[V0 − e−

∑t

s=0
rsVT I(A(T ) ≥ V (T ))|CT ] ,(4.66)

where the set CT in the conditional expectation operator is defined by

CT = { min
0≤t≤T

Vt

At
> 1}c .

5 Appendix

Mathematically there was an incorrect statement in Theorem 2.1 of Kunitomo and

Ikeda (1992), from which our Lemma 1 can be derived. Although it does lead to the

main results unchanged as in Kunitomo and Ikeda (1992), we give its corrected version

because it has been often referred in the derivative pricing literatures and the financial

industries.

Theorem 3 : Let St follow the geometric Brownian motion given by

dSt = µStdt+ σStdWt ,(5.67)

where Wt stands for the one-dimensional standard Brownian motion, µ is the drift

parameter, σ is the volatility parameter, and the initial condition S(0) = S0 . (We

assume that µ and σ are constant.) Set an interval I ⊂ [A2(t), A1(t)] with A1(t) = Beδ1t

and A2(t) = Aeδ2t and define the probability

PI =
(
min

0≤t≤T

S(t)
A2(t)

> 1 , max
0≤r≤T

S(t)
A1(t)

< 1 and S(T ) ∈ I

)
.(5.68)

Then we have

PI =
∫

I
(

+∞∑
k=−∞

kn(y))
dy

y
,(5.69)

where

kn(y) = (
Bn

An
)c1n(

A

S0
)c2nφ[ln(y); ln(S0

B2n

An
) + (µ− σ2

2
)T, σ

√
T ](5.70)

−(A
n+1

S0Bn
)c3nφ[ln(y); ln(

A2n+2

B2nS0
) + (µ− σ2

2
)T, σ

√
T ] ,
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where

c1n = 2
[µ− δ2 − n(δ1 − δ2)]

σ2
− 1

c2n = 2n
[δ1 − δ2]

σ2

c3n = 2
[µ− δ2 + n(δ1 − δ2)]

σ2
− 1 ,

and φ(y; c1, c2) is the density function of the normal distribution N (c1, c2) .

We note that in the original proof of Theorem 2.1 of Kunitomo and Ikeda (1992)

there were some ambiguous statements on the use of stopping times τ1 and τ2. For

instance, the notation by P1(T, y) = P (τ1 < τ2 < T |Y (T ) = y) should be read as

P1(T, y) = P (τ1 < τ2, τ1 < T |Y (T ) = y) . Once these ambiguous statements are

modified properly, it is straightforward to derive the main results, which remain the

same as they were stated.
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