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Abstract. It is important to detect the structural change in the
trend of time series model. This paper addresses the problem of es-
timating change point in the trend of time series regression models
with circular ARMA residuals. First we show the asymptotics of
the likelihood ratio between contiguous hypotheses. Next we con-
struct the maximum likelihood estimator (MLE) and Bayes estima-
tor (BE) for unknown parameters including change point. Then it
is shown that the proposed BE is asymptotically efficient, and that
MLE is not so generally.
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1. Introduction

The change point problem for serially correlated data has been extensively studied in the
literature. References on various time series models with change-point can be found in
the book of Csorgé and Horvath (1997) and the review paper of Kokoszka and Leipus
(2000).

Focusing on a change point in the mean of linear process, Bai (1994) derived the lim-
iting distribution of a consistent change-point estimator by least squares method. Later
Kokoszka and Leipus (1998) studied the consistency of CUSUM type estimators of mean
shift for dependent observations. Their results include long-memory processes. For a
spectral parameter change in Gaussian stationary process, Picard (1985) developed the
problem of testing and estimation. Giraitis and Leipus (1990,1992) generalized Picard’s
results to the case when the process concerned is possibly non-Gaussian.

For a structural change in regression model, a number of authors studied the test-
ing and estimation of change point. It is important to detect the structural change in
economic time series because parameter instability is common in this field. For testing
structural changes in regression models with long-memory errors, Hidalgo and Robinson
(1996) explored a testing procedure with nonstochastic and stochastic regressors. Asymp-
totic properties of change-point estimator in linear regression models were obtained by
Bai(1998), where the error process may include dependent and heteroskedastic observa-
tions.

Despite the large body of literature on estimating unknown change-point in time series
models, the asymptotic efficiency has been rarely discussed. For the case of independent
and identically distributed observations, Ritov (1990) obtained an asymptotically effi-
cient estimator of change point in distribution by a Bayesian approach. Also the asymp-



totic efficiency of Bayes estimator for change-point was studied by Kutoyants (1994) for
diffusion-type process. Dabye and Kutoyants (2001) showed consistency for change-point
in a Poisson process when the model was misspecified.

The present paper develops the asymptotic theory of estimating unknown parameters
in time series regression models with circular ARMA residuals. The model and the as-
sumptions imposed are explained in Section 2. Also Section 2 discusses the fundamental
asymptotics for the likelihood ratio process between contiguous hypotheses. Section 3
provides the asymptotics of the maximum likelihood estimator (MLE) and Bayes estima-
tor (BE) for unknown parameters including change-point. Then it is shown that the BE is
asymptotically efficient, and that the MLE is not so generally. Some numerical examples
are given in Section 4. All the proofs are collected in Section 5.

Throughout this paper we use the following notations. A’ denotes the transpose of a
vector or matrix A and x(+) is the indicator function.

2. Asymptotics of likelihood ratio and some lemmas

Consider the following linear regression model

v = {a'x(t/n<7)+B8x(t/n>71)}zs + uy,
= r(a,B8,7)+u, (say), t=1,...,n (2.1)

where z; = (241, ... , 21q)" are observable regressors, & = (a4, ... ,a,) and B8 = (B, ..., 5,)
are unknown parameter vectors, and {u;} is a Gaussian circular ARMA process with spec-
tral density f(\) and E(u;) = 0. Here 7 is an unknown change-point satisfying 0 < 7 < 1
and (a/,3,7) € ® CR? x R? x R.

Letting
n—h
Zzt+h7jztk, h=0,1,...
ORI
Ziphjzk, h=0,—1,...,
t=1—h

we will make the following assumptions on the regressors {z;}, which are a sort of Grenan-
der’s conditions.

Assumption 2.1.
(G.1) a%(0) =0O(n), i=1,...,q, and Zzi = O(p) for any (1 <1 <n).
t=l

(G.2) limy o0 2511 ,/ais(0) =0, i=1,....q.
(G.3) The limit




exists for every i,7=1,... ,qand h =0,%+1,....

(G.4) R(0) is nonsingular.
From (G.3) there exists a Hermitian matrix function M(\) = {M;;j(\);i,j =

1,...,q} with positive semidefinite increments such that
R(h) = / e dM (). (2.2)
Suppose that the stretch of series from model (1) y, = (y1, - ,yn)" is available.
Denote the covariance matrix of w,, = (uq, -+ ,u,) by ¥,, and let t,, = (ry,--- ,r,) with
re = ri(e, 3, 7). Then the likelihood function based on y,, is given by
_ 1 1 Iy —1
Ly(e, B,7) = CREPREE exp [—5(% — ) S (Y, — )| - (2.3)

Since we assume that {u;} is a circular ARMA process, it is seen that ¥, has the following
representation

where U,, = {n~Y/2exp(2rits/n);t,s =1,... ,n} and \; = 27k/n (see Anderson (1977)).
Write

S :
F,(\) = E — 1y )e
( k:) \/ﬁ pa (yt t)

Then the likelihood function (2.3) is rewritten as

n

1

1
L,(a,3,7)= - exp | —= FOR)HE.O)]?] 2.4
( ) (QW)H{Hk:1 f()\k)}l/z 2 i ( k:) | ( k:)| ( )
Define the local sequence for the parameters:
a, =a+n"a, B,=08+ n?b, m,=7+n"'p (2.5)

where a,b € R? and p € R. Under the local sequence (2.5) the likelihood ratio process is
represented as

Lu(an, By, )
LTL(a7 /87 T)

— oxp [—ﬁ > 70w 2 du O A + dOn) A §

Zn(a,b,p)




where d,(\) = (2mn)~V23""  we™s and A(M\y) = Ay + Ay + Az with

[Tn+p]
A= @2rfOn)™? > (B—a)ze ™,
s=[rn]+1
[Tn+p]

Ay = —(2mnf(\)) "2 Z a'z,e M

and

n

As = —(2mnf(\)) V2 Z bz e M,

s=[rn+p]+1

. are i.i.d. complex normal random variables with

Here note that d,(A\;),k =
f(Ax) ( Anderson (1977)). Henceforth we write the spectral

mean 0 and variance f
representation of u; by

up = /7r e Z,(N). (2.7)

The asymptotic distribution of Z,(a, b, p) is given as follows.

Theorem 1. Suppose that Assumption 2.1 holds. Then for all (/,3',7) € O, the
log-likelihood ratio has the asymptotic representation

log Zn(a, b, p)
= (ﬁ — a)'Wl + \/7_'CL/W2 + 1— Tb/W;g

1 & [Tn+p]
) I'(j) Z (B — ) zs1j2,(B — @)
Jj=—00 s=[rn]+1

e by [ ROV MO Fa /T TIb) + o)

= 1OgZ(a’7 b7 p) +Op(1>v (Say)7

where
1 x [mTntal
o D -1
Wl——%_ >z NN dZ(N),
s=[rn]+1
x [rntp]
W 5 S 1 inA )\ —leu )\
= gy | 2 B ) )
and

_ 1 Z€i5>\ e—in)\ -1
Wy s / S 2 e )z,

s=[tn+p]+1

4



Here Wi, Wy and W3 are asymptotically normal with mean 0 and covariance matrix Vi, Vs
and V3, respectively, where

2
1 x| [tntol

Vi = — >z )TN,

Ar? |_ .
s=[rn]+1
1 ™
Va = ‘/3:2—/ 2f(\) 1AM (N).
™ —T

Next we present some fundamental lemmas which are useful in the estimation of
change point.

Lemma 1. Suppose that Assumption 2.1 holds. Then for any compact set € C O, we
have

sup E,5,Z:/%(a,b, p) < exp{—g(a,b,p)}
a,B,7€EEC

where
N a
sla.b.p) =@ WK (5 )+l
with some positive definite matrix K and ¢ > 0.

Lemma 2. Suppose that Assumption 2.1 holds. Then for any compact set € C ©, there
exist k(€) = Kk, B(¢) = B such that

sup llar — as||* + [|by = bo|* + |p1 — pof*] "
(a,3,7)€C |as|<H,|bs|<H,pj <H

X Eapr[Z)*(as,bs, pa) — Zy*a, blapl)r < B(1+H").
3. Estimation theory

We are interested in the behavior of maximum likelihood estimator (MLE) and Bayes
estimator (BE). To introduce there estimators, we need a loss function w(y),y € R?
which is

1. nonnegative, continuous at point 0 and w(0) = 0, but is not identically 0;
2. symmetric: w(y) = w(—y);

3. the sets {y : w(y) < ¢} are convex for all ¢ > 0.



We denote by W, the class of loss functions satisfying 1-3 with polynomial majorants.
The example of such function is w(y) = |y|P,p > 0.

The MLE 0, = (&;;, Bysp, 7uiz) of 0 = (o, B, 7) is defined by

L(dMLa/éMLﬂA—ML) = max L<057ﬂ77—) (31>
(a,ﬁ,‘r)E@

The Bayes estimator élB = (&g, ng, pp) with respect to the quadratic loss function [(x) =
|z||* and a prior density 7 (-) is of the form

Op = /@ 0p(0|Y,)do (3.2)
where
_ m(0)L,(0)
p(OYa) = Jo 7(0) L, (v)dv’

We suppose that the prior density is a bounded, positive and continuous function pos-
sessing a polynomial majorant on . For Z(u),u = (a/,b’, p)’, in Theorem 1, define two

random vectors 4’ = (@', b, p) and v’ = (a’, b, p) by relations

Z(u)= sup Z(u), (3.3)

UcR29+1
Jgoarr wZ(uw)du
fR2q+1 Z(v)dv '

(3.4)

u =
Theorem 2. Let the parameter set © be an open subset of R**L. Then the MLE is
uniformly on (o, 3,7) € O, consistent
P — lim éML =0

and converges in distribution
Zy(ding{V/r, - Vi) Bz~ 0)} — L (@)
For any continuous loss function w € W, we have

lim Eguw((diag{v/n, -~ v/n,n})(0arz — 6)) = Ew(a).

A similar theorem for Bayes estimators can be stated as follows.

Theorem 3. The Bayes estimator 05, uniformly on 0 € O, is consistent

Py— lim 05 =6

n—oo



and converges in distribution
For any continuous loss function w € W, we have

Tim Egu((diag{y/n. - . v, n}) (85 — 8)) = Ew(@).

Remark. From Theorem 3 and Theorem 1.9.1 of Ibragimov and Has'minski(1981), we
can see that the BE is asymptotically efficient such that

Bllal* > Efa]*.

—~

. Numerical examples.
. Real data analysis.

(924

6. Proofs.
Proof of Theorem 1. From (2.6), we have
log Z,(ex, B, T)

=~ 2 SN + L0 AT} - 52 3G (6)
k=1

First we evaluate the first term in (6.1). From (2.6) we have

_ﬁ i F)~2 {dn(/\k)A(/\k) + dp(Ar) A()‘k)}

) dn (M) As + dn(M) A + dn(M) As + du D) Ar + () A + () A |
= E1+E2+E3+E4+E5+E6 (say).

Write the spectral densiy f(\) in the form



where Ry (j)’s satisfy > 72 |j[™|R;(j)| < oo for any given m € N. Then, from Theorem
3.8.3 of Brillinger (1975) we may write

(e 9]

1
2

j==o0

F = L(j)e

where I'(j)’s satisfy for any given m € N

> M) < oo

j=—o00
Then E; can be written as
B, = Z FOw)™Y2d, (M) Ay
1 n  [tntp] .
R VIR o MR
k=1 t=1 s=[rn|+1
1 n 1 oo n  [tn+p]
_ et A i(t—s) Nk
R T SR ol S
k=1 j=—00 t=1 s=[rn]+1
1 n oo n  [tn+p]
- __- = (t—s—7)A
- L TIY Y (Bt
k=1 j=—o00 t=1 s=[rn]+1

It is well known that

- itt—s—jp, _ J n if t—s5—7=0 (modn)
Ze _{ 0 otherwise. (6.2)

Since —[rn + p] <t —s < [(1 —7)n] and T'(j) satisfies > _; |7]¥|T(4)] < oo for any given
m, we have

. 1 \m . —m
DTG < =2 ()" 0G)| = o(n™™).
ljl=n li|=n
Hence we have only to evaluate E; for [ =0 of t — s — 7 = In. Thus Ej is

o0 n  [tn+p]

11
b=t h TS S o asal e
A 2m = P Y
1 00 [Tn+p] 3
= _@ F(]) Z (B_Q),zs{us+j}EE1 (SaY>'
j=—00 s=[rn]+1



Then

00 [Tn+p]

n 1 g\ zs/\
By = - NB—a) Y =z / AAAZ,(N)
Jj=— s=[rn]+1
. o [l
— —E(,ﬁ—a)’/ Dz NN dZu(N)
7 s=[rn]+1
1
= 5B — )Wy (say), (6.3)

where Z,()) is the spectral measure of w, defined by (2.7). Let Z[T”K}Hz eish =
A(X; h, p). we obeserve

EW,WY) — 4L7r2 /: AN by p)A (A hyp) fF(A) RN as o — oo
Recalling that {u;} is Gaussian, we have
Wy — N( / AN hyp)A* (N h p)f(/\)_ld)\)) (6.4)
Similarly we obtain
By~ %(ﬁ — ). (6.5)
Next we calculate the second term F, that is

By, = Zf ) "2d,, (M) Ay

n ol

n [Tn+
1 -1 1 i(t—s)
= I Zf k) \/ﬁ Z wa'z e
k=1 t=1

s=1
— R F 77’.7)\]6 au zselt S) Ak
dnm 21 k=1 j=—o00 \/_ t=1 s=1
_ A (t—s—j)
= — CL’LLtZs €
4 27 = t il

Here note that n — 1 > ¢ — s > —[rn]. Because of (6.2) we have only to evaluate Ey for
l=0,10ft—s—7=1In. Then

11 & y lrntpl

L a [
B g UG 3 (et vz =B o)



Similarly as in E,

00 a [Tn+p]

n _ 11 zs>\ ZJ)\ n\
By = o 2 Z/ﬂ (14 €™)dZ,(N)z,
o [Tn+p]
— Z/ ( r(j)ei8*> (14 ™) dZ,(N) zs
r =
[Tn+p]

_ 47rf Z 2 / (1 4 e F(A) L dZu(N)

_ a1 Sz | (14 €™ F)1dZ,(0)

= Wy (say), (6.6)

where
D 1 T —1
Wy -2 N (o, o / 2/ dM(/\)) | (6.7)

which follows from the Riemann-Lebesgue theorem and Grenander’s conditions (G.1) -
(G.4). Similarly we obtain.

Ta'
Es ~ \/; Ws. (6.8)
Next
Es = Z FOw)™Y2d, (M) As

= m Z f(%)™ Z Z b z "9k

t 1 s= Tn+p]+1

_ 4n7T Z 27T Z 723)% Z Z b/utzsei(tfs))\k

=—o00 t 1 s= Tn+p]+1
o
11

= T 21U Z ) b’“t%ﬁ;ei““”’-

Jj=—00 t 1 s=[rn+p]+1
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Since [(1—7)n] > t—s > 1—n, we have only to evaluate Fj3 for [ =0,—1 of t —s—j = In.

Hence
11 &, 0 = -
B3 ~ s P(J)% D (Uays + Usrjn)ze = By
Jj=—00 s=[rn+p|+1

Similarly as in E» we have

. 11 b’ \
- _ X zg>\ —in\
By = o Py T'(j) § / (14 ) dZ,(N) 2,

\/ﬁs [Tn+p]+1
1 b, TS\ —inA
= v Z F(J) (1+e™)dZu(N)zs
s= Tn+p]+1 j—foo
b’ s —in -
- 2=y / ML+ e ) dZ, )
s=[rn+p]+1
LAY =y zn: ze | (14 e f(N) 7 dZu(N)
A - \/ﬁs:[7n+p]+1
\/1—717//7r Z isA —inA “1
- Y- 7 zse" | (147N f(N) " dZ,(N)
2 d 27T \ TL 1 - T =[rn+p]+1
V1—71b
= TWg, (6.9)
where
1 K
Wy 25 N (o, g/ 2f()\)1dM()\)) (6.10)
Similarly we obtain.
V1—r71b
Es = TTW3 (6.11)
Hence from (6.3), (6.5), (6.6), (6.8), (6.9) and (6.11), we have
IR ~1/2
5 2 { @A) + da(h) A0 |
k=1
~ (ﬁ — a)'W1 + \/FCL/WQ —+ 1— Tb/W3. (612)

11



Next we evaluate the second term in (6.1), which is

1 n
— = AW
k=1

1 n
= 5, Z(Al + Ag + A3)(Ar + Ay + A3)
k=1

1 < L L o o L o
— —% Z(|A1‘2 + |A2|2 + |A3|2 + AlAQ + A1A3 + A2A3 + +A2A1 + A3A1 + A3A2)'
k=1

We have

1 n
—5- DA
k=1

1 & 1 [ frn-+]
= - _ / it o ! —isA
= I 2= T D> (B )z Y (B a)zet
k=1 t=[tn]+1 s=[rn]+1
1] <1 & [rnt+p]  [rn+p]
= T o 7”)\ i(t—s)\
= gy 2 T 3 Y (B a)zE (B - el
k=1 J==—00 t=[rn]+1 s=[rn]+1

[Tn+p]  [Tn+p]

- _ﬁi Z Z (B—a)'z2z(8—a)— Z i(t—s—3) M

t=[rn]+1 s=[rn]+1 szl
Lo o)
- -~ . B , W B
T 4m2n j:mr(j) _[Z:]H(ﬁ )'Ze1;Z,(B — ). (6.13)

Next we have

1 n
—5 2 4ol
k=1

s et

1 ‘
= 71 A / it —isA
= 4n7T227T ‘ZOO J _\/—ﬁ ; azie '+ Z a'z,e
11 & [rntp] [rn-) Lo
= T 5= I'(j)a’ ‘al = i(t=s=)M
dnm 27 = (F)a ; ; Z12a {n ; e

12



Note that [tn] >t —s>

1 n
_% Z ‘AQ‘Q
k=1

—[rn]. Similarly we have

[Tn+p]

1 1 T 1 ;1 /
_M%F Z ZsijZeQ = o P (])aE ; Zs1jZ.a
T 1 > o T ™1 e .
_ - NG ! z])\dM A — - T z])\dM A
4 21 i ()a /ﬂe (Aa i /,r 2m ]ZOO (7)e (A)a
- Ta / FO)1dM (VN (6.14)
7T —T
Also we obtain
1 — )
—5- D14l
k=1
1 & 1 1 - 1 n ,
= —— —— Z bz et e Z b z e 5
dnm = f(Ae) t=[rn+pl+1 v s=[rn+p]+1
_ Ll p(j)a/ Z Z ztz;a{liemsmk}
S an j=—o00 =[rn+p]+1 s=[rn+p]+1 n k=1
N 1 1 & o " b
> o G Y ze2
=—00 =[rn+p]+1
1—-71 & 1 "
= — — ()b ez b
A 27rj:_ b) n(l—r7) S[mzﬂ]“zﬂzs
1—-71 T
= — — NG GAIM (N)b
3 210 | erantey
1—7 (L —
= - b | — L'(§)e" dM (\)b
=0 [ 5 3 T
1_ ™
= -= Ty [ FO)T'dM(\)b. (6.15)
T
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The fourth term becomes

1
-——>» AjA
an 142
k=1
QA [ e | rotl
S S e (3 e [ e
k=1 J=—00 t=[rn]+1
11 1 [Tn+p] [Tn+p]
— (t—s—
SE == D OLCS o I CIRVERZED S
t=h+1 s=1
From1l—-p<t—s<[m|+p—1,t—s—j=0,it is seen that
- AjAy ~ — —a)ziz,_.a=0|—) (6.16

Similarly we observe

1 u T —1/2 1 - A~ -1/2
%;AlAg_O(n ), %;AgAl _O(n )

I &, —
and Q—ZA?,A1 ~ O(n~'/?). (6.17)
n
Now we evaluate
I &, —
- Ay A
- Aud
k=1
1 [Tn+p] 1 n
_ —zg)\ - / itA - / —isA
- el e [ e [ S wee
=—o00 t=1 s=[rn+p]+1
S [Tn+4p] n
1 11 / / 1 i(t—s—37)A
S St VUD D SERTRIE) SR
am 27Tnj:—00 t=1 s=[rn+p]+1 n k=1
Since —n + 1 <t — s < —1, we have only to evaluate for t — s — j =0, —n.
1 n
- Ay A
QnZ 20
k=1
11 < A | " 1
~ ———/7(1—1) Z — Z — Z a’ztz’sb—Ze"(t’S’j))‘k
Am 2m j=—o00 ™ \% T)?”L s=[rn+p]+1 n k=1
SO & T
R r ! GAIM(N)b
o X e / 0

_ _7VTSW_T)@'/7T FON)TAM(N)b. (6.18)
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Similarly we have
I &, V(1 —7) T _
- AsAy ~ —Y— “a/ .Y . 1
o DA ' [ oy tam s (6.19)

From the equations from (6.13) to (6.19) together with (6.4), (6.7), (6.10) and (6.12)
complete the proof of theorem 1.

Proof of Lemma 1. From Hannan (1970) and Anderson (1977) the joint density of
dn(A1), -+, dn(Ay) 1s given by

pldy(Ny),-- -, d =C, HeXp ) )" dn (M) (6.20)

where C,, = 7" [[_, f(Ax)~". Using this,

EZ)*(a,b, ,0)

= Fexp|—

Zf ) 1/2{ M)A + duOos A()\k)}] exp [—%im(mﬁ
- /~-~/Cnexp<—;dn()\ )
Xexp( 41nif )2 {du () A v) AQw )})
xexp <—in 3 10w ) A(dn(0) - dal)
_ / / C, exp[ (f()\k)—l/an()\k)Jr i(\j%)) (f(/\k)—l/an(/\k)Jr i(\j%))]
o | SO - 3 AP
= exp (—m—n;\A(Ak)F).

Recall that the definition of likelihood process in (2.6), we have

3 < 3 <
exp <_ﬁ > |A()\k)|2> — exp ( o D AL+ Ag + A ) (6.21)

k=1

d(dn(A1) - - dn(An)

From the proof of Theorem 1 and Assumption (G.1), the first term in (6.21) is bounded

15



1 & [rntp]  [Tn+p]
_m—nZ(AlA) ~ 168 — Z Z (B—a)zl(t—3s)z,(8 — a)
k=1 t=[rn]+1 s=[rn]+1
3 1 [Tn+p]
c 2 b V2 . -1
< 2 N Bz xmin (Y
t=[tn]+1
= —[0(p)] (6.22)

for p > 0. We have already shown in (6.16) and (6.17) that

n

1

(Ay + Aj) —1/2 LN ~1/2
Ton 2 {A1(A2+A3)} = O(n~?) and 16—71; {AI(A2+A3)} = 0(n"?). (6.23)

Furthermore, from the proof of Theorem 1 we can find a positive definite matrix K so
that

n

3

16n =

(Ay+ A3)(Ay + A3) ~ (a/,b) K ( . ) (6.24)

Hence (6.22)-(6.24) implies the required result.

Proof of Lemma 2. Let 8] = (&, 3], 71)" and 05 = (a), 3,7) are some given values
in ©, and are the forms of a; = a+n""2a,,8, = B+n""?by, 7 =74+n"p, 0 = a+
n~2ay, B, = B+n"?b; and 7, = T+n"'p,. Denoting A()\;) under 6; as A(a;, b;, pi; \i)
we set

Ay, = Aay, by, pi; \) — Alag, by, pa; Ar)

Dy, = |A(a1, b1, p1; )\k)|2 - ‘A(am by, p2; )\k)|2

and
Y, = exp [ Z FOR) Y Hd (M) Avy + dn (k) A} — Z AV

The process Y,, is written as

o Ln(a27ﬁ277-2> e
Yn ; (Ln(alaﬂ177-1>) ' (625)

Then we observe

1/4
Eopr }25/4(%, b1, p1) — 25/4(012, bo, p2)’ /

E011ﬂ1,7'1 (1 - Yn)4
= E(1-4Y,+6Y, —4Y? +Y)))

16



We have

—4EYn = —4E6Xp (— L if( ) 1/2{d (/\k:)Aln +d (/\k: Aln} - _ZA2n>

8vn i
= —4
/ /Clexp { ;2 +8\/_}{ 1/2 +8\/ﬁ
[ L
X@m[@E;:AMAM—ggkIA% d(d,(N) - dn(N))

= —dexp(n+7) say

1 <, — 1<
= —4 — A Ay, — — A
I MY

Similarly, we obtain

6EY? = 6exp(4n +27), —4EY? = —dexp(9n+ 37)
and
EY} = exp(16n + 47).
Hence
E[1 =Y, " =1 —4e"7 4 627 — 49137 4 el0nt4n, (6.26)
Using the following expansion for small y
e ~1+y
we have

Bl =Y, " = 1=4(1+n+7) +6(1+4n+27) —4(1 + 99+ 37) + (1 + 161+ 47)
+0(1°) + 0(v*) + O(m)
= 0+0(n*) +0(v*) + O(n)
which implies that the Taylor expansion of (6.26) starts with the linear combinations of

second order terms of n?,+% and 7. Here we need to evaluate the asymptotics of  and
v in (6.26). Assume that without loss of generality p; > pa, then

L B g
Aln - f(/\k:)_l/2 (ﬂ - a),zse_w)\k
2m s=[rn+p2]+1
1 [T”‘i’ﬂl] ' n '
. f()\k)il/z Z (al . aQ)/zsefzs)\k + Z (bl o aQ)/zsefzs)\k
2mn s=1 s=[rn+p1]+1
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Using the similar argument in proof of Lemma 1, we observe

1=0llp1 = p2)) + 0 |((a1 — @), by — b)) K ( b~ b ﬂ |

which is written as

n = O[(p2 — p1)] + O(llar — az|) + O(]|by — byl|).

Analogously we have

v = O[(p2 — p1)] + O(]|ar — az]|) + O(]|br — b2)),

which completes the proof.

Proof of Theorem 2. The proof follows from Theorem 1, Lemmas 1 and 2 of this paper
and Theorem 1.10.1 of Ibragimov and Has’minski (1981).

Proof of Theorem 3. The properties of the likelihood ratio Z,(a,b, p) established
in Theorem 1, Lemmas 1 and 2 allow us to refer to Theorem 1.10.2 of Ibragimov and
Has'minski (1981).
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