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1. Introduction

In this paper, we investigate the test for structural change in the long-run persistence in a

univariate time series. Our model has a unit root with no structural change under the null

hypothesis, while under the alternative it changes from a unit-root process to a stationary

one or vice versa. We propose the Lagrange Multiplier (LM) test and the ‘demeaned version’

of the LM test, and investigate both the asymptotic and finite-sample properties. Although

the LM test is preferred in view of its limiting power, we recommend using the demeaned

version of the test because it performs better in finite samples.

2. Testing for stability in the long-run persistence

2.1. Tests with a known break point

Let us consider the following model:

yt = µ0 + µ1t+ xt, (1 − αtL)ψ(L)xt = ut, (1)

for t = 1, · · · , T , where {ut} ∼ i.i.d.(0, σ2), L denotes a lag operator, ψ(L) is the p-th order

lag polynomial and all roots of ψ(z) = 0 lie outside the unit circle. Suppose that some shock

occurred at time T ∗
B and T ∗

B/T = λ∗ is constant.
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The testing problem is that

H0 : αt = 1 ∀t v.s. H1
1 :

{
αt = 1 t ≤ T ∗

B

|αt| < 1 t ≥ T ∗
B + 1

or H2
1 :

{
|αt| < 1 t ≤ T ∗

B

αt = 1 t ≥ T ∗
B + 1

.

(2)

Note that {xt} is a unit-root process under H0. On the other hand, under H1
1 , it changes

from a unit-root process to a stationary one, while the change is in the reverse direction

under H2
1 .

The process {xt} in (1) can be expressed as

�xt = ρtxt−1 + φ1t�xt−1 + · · · + φpt�xt−p + ut, (3)

where

ρt = −(1 − αt)ψ(1),

φjt = αtψj − (1 − αt)(ψj+1 + · · · + ψp), 1 ≤ j ≤ p− 1, φpt = αtψp.

Then, the testing problem (2) is equivalent to

H ′
0 : ρt = 0 ∀t v.s. H1′

1 :

{
ρt = ρ1 = 0 t ≤ T ∗

B

ρt = ρ2 < 0 t ≥ T ∗
B + 1

or H2′
1 :

{
ρt = ρ1 < 0 t ≤ T ∗

B

ρt = ρ2 = 0 t ≥ T ∗
B + 1

.

(4)

Let us consider the LM test. After some algebra, the LM test statistic is shown to be

LM τ
o (λ∗) =

(∑T ∗
B

t=1 ũtx̃t−1

)2

σ̃2
∑T ∗

B
t=1 x̃

2
t−1

+

(∑T
t=T∗

B
+1 ũtx̃t−1

)2

σ̃2
∑T

t=T∗
B+1 x̃

2
t−1

. (5)

Note that the above test statistic (5) is constructed for the two-sided alternative. Since

our testing problem (4) is one-sided, we modify the test statistic (5) as

LM τ
1 (λ∗) =

∑T ∗
B

t=1 ũtx̃t−1

σ̃
√∑T ∗

B
t=1 x̃

2
t−1

+

∑T
t=T∗

B+1 ũtx̃t−1

σ̃
√∑T

t=T∗
B+1 x̃

2
t−1

,

which rejects the null hypothesis when it takes small values.

As in Oya and Toda (1998), we can show that the above test statistic is asymptotically

equivalent to the sum of the t statistics for ρ1 and ρ2 in the regression

�x̃t = ρ1D1tx̃t−1 + ρ2D2tx̃t−1 + φ′z̃t−1 + et, (6)
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where D1t = 1 for t ≤ T ∗
B and 0 otherwise, D2t = 1 − D1t, φ = [φ1, · · · , φp]′ and z̃t−1 =

[�x̃t−1, · · · ,�x̃t−p]′. Then, we define the test statistic for (4) as

LM τ (λ∗) = tτ1(λ
∗) + tτ2(λ

∗),

where tτ1 and tτ2 are t statistics for ρ1 and ρ2.

We also consider the ‘demeaned version’ of LM τ (λ∗), i.e., the sum of the t statistics for

ρ1 and ρ2 in the regression

�x̃t = c1D1t + ρ1D1tx̃t−1 + c2D2t + ρ2D2tx̃t−1 + φ′z̃t−1 + et.

We denote the demeaned version statistic as LM τ
d (λ∗).

The following theorem gives the limiting distributions of LM τ and LM τ
d under the null

hypothesis. We define the following functionals of a stochastic process V (r) in generic forms,

S(λ∗) =
1
2(V 2(λ∗) − λ∗)√∫ λ∗

0 V 2(s)ds
+

1
2 (V 2(1) − V 2(λ∗) − (1 − λ∗))√∫ 1

λ∗ V 2(s)ds
,

≡ S1(λ∗) + S2(λ∗).

Sd(λ∗) =
λ∗
2

(
V 2(λ∗) − λ∗

) − V (λ∗)
∫ λ∗
0 V (s)ds√

λ∗2
∫ λ∗
0 V 2(s)ds− λ∗

(∫ λ∗
0 V (s)ds

)2

+
1−λ∗

2

(
V 2(1) − V 2(λ∗) − (1 − λ∗)

) − (V (1) − V (λ∗))
∫ 1
λ∗ V (s)ds√

(1 − λ∗)2
∫ 1
λ∗ V 2(s)ds− (1 − λ∗)

(∫ 1
λ∗ V (s)ds

)2
. (7)

≡ Sd1(λ∗) + Sd2(λ∗). (8)

Theorem 1 Under H ′
0, LM

τ (λ∗) d−→ S(λ∗) and LM τ
d (λ∗) d−→ Sd(λ∗), where d−→ signifies

convergence in distribution and V (r) is a standard Brownian bridge, V (r) = W (r)−rW (1),

with W (r) a standard Brownian motion.

When yt has no trend, that is, if we know µ1 = 0 in the model (1), we define x̃t = yt−y0

and construct the test statistics LMµ(λ∗) and LMµ
d (λ∗) completely in the same way as

LM τ (λ∗) and LM τ
d (λ∗).

Theorem 2 Under H ′
0, LM

µ(λ∗) d−→ S(λ∗) and LMµ
d (λ∗) d−→ Sd(λ∗), where V (r) =

W (r).
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Critical points of the above limiting distributions are tabulated in Table 1a.

Next, we investigate the power properties of the test statistics. To simplify the investi-

gation, we consider the simple model with p = 0, that is, we consider the model (1) with

(1−αtL)xt = ut. In the following, we do not consider the fixed alternative H1
1 or H2

1 but a

sequence of local alternatives:

H1�
1 :

{
αt = α1 = 1 t ≤ T ∗

B

αt = α2 = 1 − θ
T t ≥ T ∗

B + 1
or H2�

1 :

{
αt = α1 = 1 − θ

T t ≤ T ∗
B

αt = α2 = 1 t ≥ T ∗
B + 1

,

where θ > 0.

The limiting distributions of test statistics under the local alternatives can be derived

in the same way as Theorems 1 and 2. Using such distributions, we can depict the local

limiting power as a function of θ. Figure 1 shows the case when the model does not have

a linear trend and λ∗ = 0.5. We can see that both test statistics are more powerful against

H1
1 than H2

1 , and LM τ has a better power property than the demeaned version statistic.

On the other hand, from Figure 2, where a linear trend is included, LM τ
d is more powerful

than LM τ when the alternative is H1
1 .

2.2. Tests with an unknown break point

In practice, it is often the case that we do not know the actual break point T ∗
B and, for such

a case, several testing procedures have been proposed in the literature. One useful method

is to take infimum of the test statistic in the closed interval:

inf -LM τ = inf
λ∈Λ

LM τ (λ),

where Λ is a closed set in (0, 1). We also consider the test statistics of an average exponential

form, as considered in Andrews, Lee and Ploberger (1996) and Andrews and Ploberger

(1994),

avg-LM τ =
∫

λ∈Λ

(
tτ1(λ)2 + tτ2(λ)2

)
dλ, exp-LM τ = log

∫
λ∈Λ

exp
(
tτ1(λ)2 + tτ2(λ)2

)
dλ.

Exactly in the same way, we consider the test statistics inf -LM τ
d , avg-LM τ

d and exp-LM τ
d

as the demeaned versions.
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The limiting distributions are derived in the same way as the previous subsection. We

tabulate the percentage points of the limiting distributions when Λ = [0.2,0.8] in Table 1b.

Notice that inf -LM -type test rejects the null hypothesis when it takes small values while

avg-LM exp-LM -type tests reject it for large values.

3. Finite-sample properties

In this section, we investigate the finite-sample properties of the test statistics in the previous

section. The following data generating process is considered:

yt = x′tβ + zt, (1 − αtL)(1 − ψL)zt = ut,

where {ut} is NID(0, 1) and xt = 1 or [1, t]. We set β = 0, α1, α2 = 1, 0.95, 0.9, 0.8, 0.7,

ψ = 0,±0.5, λ∗ = 0.3, 0.5, 0.7, and the sample size T = 100 and 200. The initial value of

zt is set equal to 0 and the first 100 samples are deleted. The level of significance is 0.05

and the number of replications is 1,000 in all experiments, performed by the GAUSS matrix

programming language.

Tables 2a and 2b report the size and power without a linear trend when the break point

is known and ψ = 0. From the tables, we can see that LMµ has a reasonable empirical size

close to 0.05 in all cases, while LM τ
d tends to overly reject the null hypothesis when T = 100.

As to the power, in almost all the cases, LMµ
d is more powerful than LMµ. Since the power

of LMµ is very low, we do not recommend the use of LMµ in practice. As we have seen in

the previous section, the demeaned version test seems to be more powerful against H1
1 for

smaller values of λ∗ and so against H2
1 for larger values of λ∗. From Tables 3a and 3b, we

see that the relative performance of the test is preserved when a linear trend is included.

For other values of ψ, the performance of the test is similar to the case of ψ = 0, but

the tests tend to be slightly less powerful when ψ = 0.5. (We omit details to save space.)

As we have seen in the above, our finite-sample simulation shows that the power of

LMµ is very low, although LMµ performs better than LMµ
d , in view of the power from the

asymptotic result. This poor performance under the alternative is due to the initial-value

condition. Table 4 summarizes the effect of the initial value on the power. We see that
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LMµ has reasonable power when z0 = 0, whereas its power decreases dramatically when

x0 = 10, even if the sample size is 1,000. On the other hand, LMµ
d seems to be robust to the

initial-value condition. From these results, we recommend using the demeaned test statistic

in practical analyses.

For the case when the break point is unknown, we tabulate the simulation results in

Tables 5–6. We only report the demeaned versions of the test statistics and the case when

λ∗ = 0.5 because the performance of the LM-type test is very poor. The sizes of the three

test statistics are similar but the avg-LM statistic has a little larger size. As to the power,

the exp-LM statistic is the most powerful against H1
1 among three statistics while the power

of avg-LM statistic is highest against H2
1 . On average, it seems that exp-LM test has totally

the best finite-sample properties among the three test statistics.

4. Concluding remarks

In this paper, we have investigated the test for a change in the long-run persistence in

a univariate time series. We proposed two types of test statistics, one is the LM-type

test statistic and the other is the ‘demeaned version’ of the LM-type test. Although the

former performs better than the latter, in view of the limiting power property in some cases,

we recommend using the demeaned version of the LM-type test because the finite-sample

property of the LM-type test is much affected by the initial condition and it loses power in

some cases, while the demeaned version is robust to such a condition.
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