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1 Introduction

This article proposes an estimation method for eigenvalues and eigenvectors of

covariance functions. This is an extension of Principal Components Analysis

(PCA) of finite dimensional random vectors to random “functions.”

Over the past few decades, a considerable number of studies have been con-

ducted on functional data analysis in statistics. Some surveys of the field are

given in Ramsey and Silverman (1997) and Ramsey and Daizill (1991).

Such methods might be useful in econometrics. For example, suppose the

ICM test (Bierens and Ploberger 1997) for functional form E[y|x] = Q(θ, x).

This test uses the following random function on Ξ ⊂ Rk,

zn =
1√
n

∑

(yt −Q(θ̂, xt)) exp(ξ′xt) ξ ∈ Ξ ⊂ Rk,

and the null distribution of the test statistic depends on the eigenvalues of the

covariance function of zn. Thus if we can estimate the eigenvalues, critical values

of the test statistic are easily calculated. See Hitomi (2000) for detail.

In many econometric models, sample covariance functions include estimated

parameters and are defined on Rk ×Rk instead of R1 ×R1. Ramsey and Silver-

man (1997) have used a discrete approximation method for estimating eigenval-

ues and eigenvector of covariance functions on a subset of R1×R1. It is difficult,

however, to extend their method to higher dimensions. Dauxois, Pousse and

Romain (1982) have investigated the convergence of estimated eigenvalues and

eigenvectors of sample covariance functions on separable Hilbert space. Their

sample covariance function has not included estimated parameters and they

have proposed no estimation method, however.

This article solves the above problems for applying the functional data analy-

sis to econometric models. It proposes an estimation method of eigenvalues and

eigenvectors from a sample covariance function on a subset of Rk × Rk, which

involves estimated parameters, and proves consistency of estimated eigenvalues

and eigenvectors.

The plan of the paper is the following. Section 2 explains the model and

the estimation method. The consistency of the estimated eigenvalues and eigen-

vectors is proved under high-level assumptions in section 3. As the example,

low-level assumptions for the ICM test are derived in section 3. The last section

is concluding remarks. Some mathematical proofs are included in Appendix.

1



2 Model and Estimation Method

Suppose that we are interested in eigenvalues and eigenvectors of a continuous

covariance function Γ0(ξ1, ξ2) on Ξ × Ξ, where Ξ is a compact subset of Rk,

k ≥ 1. We assume that Γ0 satisfies

∫∫

|Γ0(ξ1, ξ2)| dµ(ξ1)dµ(ξ2) <∞,

where µ(ξ) is a known probability measure on Ξ.

An eigenvalue λ and an eigenvector ψ(ξ) of Γ0(ξ1, ξ2) are the solution of

characteristic equation

∫

Γ0(ξ1, ξ)ψ(ξ1)dµ(ξ1) = λψ(ξ). (1)

Assume that there is a consistent estimator Γn of Γ0 , which involves an estimate

of unknown parameters θ0 ∈ Θ ⊂ Rq,

Γn(θ̂, ξ1, ξ2) =
1

n

n
∑

t=1

an(θ̂, wt, ξ1)an(θ̂, wt, ξ2), (2)

where an(.) : Θ ×Rd × Ξ → R1 is a function that satisfies ‖an(θ,wt, ξ)‖2 < ∞
for all (θ,wt) ∈ Θ×Rd, wt ∈ Rd is an i.i.d. random variable and θ̂ is a consistent

estimator of θ0.

We begin by introducing some notation. < f, g > is the inner product in

L2(µ(ξ)), i.e.

< f, g >=

∫

f(ξ)g(ξ)dµ(ξ),

and ‖·‖2 is L2(µ(ξ)) norm. Let Φ : L2(µ(ξ)) → L2(µ(ξ)) be a bounded linear

operator, we write Φf when we apply operator Φ to f ∈ L2(µ(ξ)). Thus Γnf

implies

Γnf =

∫

Γn(θ̂, ξ1, ξ)f(ξ1)dµ(ξ1).

‖·‖F is the uniform operator norm, i.e.

‖Φ‖F = sup
‖f‖

2
=1

‖Φf‖2 .

For notational simplicity, sometime we abbreviate an(θ̂, wi, ξ) by ai(ξ) or ai.

We estimate eigenvalues and eigenvectors of Γn(θ̂, ξ1, ξ2). The operator Γn

maps arbitrary function f(ξ) ∈ L2(µ(x)) on a finite dimensional space, which is
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spanned by {a1(ξ), a2(ξ), . . . , an(ξ)}, since

Γnf =

∫

Γn(θ̂, ξ1, ξ)f(ξ1)dµ(ξ1)

=

∫

1

n

n
∑

t=1

at(ξ1)at(ξ)f(ξ1)dµ(ξ1)

=
1

n

n
∑

t=1

〈at, f〉 at(ξ)

=
n
∑

t=1

btat(ξ),

where bt = 1
n 〈at, f〉. Let Hn be the space that is spanned by {a1(ξ), a2(ξ), . . . , an(ξ)}.

Let λn and ψn be a solution of the sample characteristic equation

∫

Γn(θ̂, ξ1, ξ)ψn(ξ1)dµ(ξ1) = λnψn(ξ) (3)

⇔ Γnψn = λnψn. (4)

ψn is a linear combination of {a1, a2, . . . , an} since Γnψn ∈ Hn. Therefore we

can express ψn as

ψn =

n
∑

t=1

αtat(ξ)

and put it into (3), we get

Γnψn = λn

n
∑

t=1

αtat

⇔ 1
n

∑n
t=1 〈at, ψn〉at = λn

n
∑

t=1

αtat

⇔
∑n

t=1 〈at,
∑n

s=1 αsas〉 at = λn

n
∑

t=1

αtat

⇔ ∑n
t=1

∑n
s=1 αs 〈at, as〉 at = λn

n
∑

t=1

αtat.

Comparing the coefficients of at, we get

n
∑

s=1

αs 〈at, as〉 = λnαt (5)

Now we define the n× n matrix A such that the (i, j) element of A is 〈ai, aj〉,

A = {〈ai, aj〉}
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and the m× 1 vector α as α = (α1, . . . , αn)′. Then the matrix expression of (5)

is

Aα = λnα. (6)

This implies that an eigenvalue of (3) is an eigenvalue of matrix A and an eigen-

vector of (3) is ψn =
∑n

t=1 αtat, where αt is the t-th element of the eigenvector

of matrix A corresponding λn.

We got the following lemma,

Lemma 1. Suppose ‖an(θ,wt, ξ)‖2 <∞ for all (θ,wt) ∈ Θ ×Rd.

The following statements are equivalent,

1. λn and ψn is a solution of the characteristic equation

∫

Γn(θ̂, ξ1, ξ)ψn(ξ1)dµ(ξ1) = λnψn(ξ).

2. λn is a eigenvalue of A, ψn =
∑n

t=1 αtat(ξ), where αt is the t-th element

of the corresponding eigenvector of λn and

A = {〈ai, aj〉} .

3 Consistency

We assume the following two sets of high-level assumptions. An example of

low-level assumptions is discussed in section 4.

Assumption a.s.

1. (uniform convergence) Θ and Ξ are compact subset of Rq and Rk respec-

tively. Let Γn(θ, ξ1, ξ2) be

Γn(θ, ξ1, ξ2) =
1

n

n
∑

t=1

an(θ,wt, ξ1)an(θ,wt, ξ2).

Γn(θ, ξ1, ξ2) converges to a nonrandom continuous function Γ(θ, ξ1 , ξ2)

a.s. uniformly on Θ×Ξ×Ξ. And Γ(θ0, ξ1, ξ2) = Γ0(ξ1, ξ2) for all (ξ1, ξ2) ∈
Ξ × Ξ.

2. (consistency of θ̂) θ̂ converges to θ0 ∈ Θ a.s.
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Assumption pr

1. (uniform convergence) Θ and Ξ are compact subset of Rq and Rk respec-

tively. Let Γn(θ, ξ1, ξ2) be

Γn(θ, ξ1, ξ2) =
1

n

n
∑

t=1

an(θ,wt, ξ1)an(θ,wt, ξ2).

Γn(θ, ξ1, ξ2) converges to a nonrandom continuous function Γ(θ, ξ1, ξ2) in

probability uniformly on Θ × Ξ × Ξ. And Γ(θ0, ξ1, ξ2) = Γ0(ξ1, ξ2) for all

(ξ1, ξ2) ∈ Ξ × Ξ.

2. (consistency of θ̂) θ̂ converges to θ0 ∈ Θ in probability.

The first set of assumptions corresponds to almost sure convergence of the eigen-

values and the eigenvectors and the second set of assumptions corresponds to

convergence in probability.

Let {λi} be the decreasing sequence of the non-null eigenvalues of Γ0(ξ1, ξ2)

and {ψi} be the corresponding sequence of the eigenvectors of Γ0(ξ1, ξ2), {λni}
be the decreasing sequence of the non-null eigenvalues of Γn(θ̂, ξ1, ξ2) and {ψni}be

the corresponding sequence of the eigenvectors of Γn(θ̂, ξ1, ξ2) and define the set

Ii as the following,

Ii = {j|λi = λj}, |Ii| = ki.

Proposition 2. Suppose Assumption a.s. is satisfied. When λi is of order ki,

there are ki sequences {λnj|j ∈ Ii} converging to λi a.s. If Assumption pr is

satisfied instead of Assumption a.s., {λnj |j ∈ Ii} converge to λi in probability.

Moreover the convergence is uniform in j.

Proof. First we think the almost sure convergence case.

sup
ξ1,ξ2

∣

∣

∣Γn(θ̂, ξ1, ξ2) − Γ0(ξ1, ξ2)
∣

∣

∣

≤ sup
ξ1,ξ2

∣

∣

∣Γn(θ̂, ξ1, ξ2) − Γ(θ̂, ξ1, ξ2)
∣

∣

∣+ sup
ξ1,ξ2

∣

∣

∣Γ(θ̂, ξ1, ξ2) − Γ(θ0, ξ1, ξ2)
∣

∣

∣

≤ sup
θ,ξ1,ξ2

|Γn(θ, ξ1 , ξ2) − Γ(θ, ξ1 , ξ2)| + sup
ξ1,ξ2

∣

∣

∣
Γ(θ̂, ξ1, ξ2) − Γ(θ0, ξ1, ξ2)

∣

∣

∣
.

The first term of the last inequality converges to zero a.s. since Γn(θ, ξ1 , ξ2)

converges to Γ(θ, ξ1, ξ2) a.s. uniformly on Θ × Ξ × Ξ. Γ(θ, ξ1, ξ2) is uniformly

continuous because Γ(θ, ξ1 , ξ2) is continuous on Θ × Ξ × Ξ and Θ × Ξ × Ξ is

a compact set. Thus the second term converges to zero a.s. since θ̂ → θ0 a.s.

Therefore Γn(θ̂, ξ1, ξ2) → Γ0(ξ1, ξ2) a.s. uniformly on Ξ × Ξ.

Let think the distance between Γn and Γ0 in the uniform operator norm on
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L2(µ(ξ)) → L2(µ(ξ)).

‖Γn − Γ0‖F

= sup
‖f‖

2
=1

‖Γnf − Γ0f‖2

≤ sup
‖f‖

2
=1

∥

∥

∥

∥

∫

(

Γn(θ̂, ξ1, ξ) − Γ0(ξ1, ξ)
)

f(ξ1)dµ(ξ1)

∥

∥

∥

∥

2

≤ sup
‖f‖

2
=1

(

∫ (∫

(

Γn(θ̂, ξ1, ξ) − Γ0(ξ1, ξ)
)

f(ξ1)dµ(ξ1)

)2

dµ(ξ)

)1/2

≤ sup
‖f‖

2
=1





∫

(

(
∫

∣

∣

∣
Γn(θ̂, ξ1, ξ) − Γ0(ξ1, ξ)

∣

∣

∣

2

dµ(ξ1)

)1/2(∫

f(ξ1)
2dµ(ξ1)

)1/2
)2

dµ(ξ)





1/2

= sup
‖f‖

2
=1

(
∫∫

∣

∣

∣Γn(θ̂, ξ1, ξ) − Γ0(ξ1, ξ)
∣

∣

∣

2

dµ(ξ1)dµ(ξ)

)1/2

‖f(ξ)‖2

≤ sup
ξ1,ξ2

∣

∣

∣
Γn(θ̂, ξ1, ξ) − Γ0(ξ1, ξ)

∣

∣

∣
.

Thus Γn converges to Γ0 a.s. in the uniform operator norm. The conclusion

follows directly from lemma 5 of Donford and Schwartz (1988, p1091).

The proof of the convergence in probability case is similar. Since Γn(θ, ξ1 , ξ2) →
Γ(θ, ξ1 , ξ2) uniformly on Θ×Ξ×Ξ in probability and θ̂ → θ0 in probability, then

Γn(θ̂, ξ1, ξ2) → Γ0(ξ1, ξ2) uniformly on Ξ × Ξ in probability. Thus any subse-

quence nk in sequence n contains a further subsequence nki
such that Γnki

→ Γ0

a.s. uniformly on Θ× Ξ × Ξ. Therefore Γnki
→ Γ0 a.s. in the uniform operator

norm. Then apply lemma 5 of Donford and Schwartz (1988, p1091) to the se-

quence of operator Γnki
. Therefore for j ∈ Ii, λnki

j → λi a.s. This implies for

j ∈ Ii, λnj → λi in probability.

The following proposition is worth mentioning in passing.

Proposition 3. Soppose Assumption a.s. (Assumption pr)is satisfied. Then

n
∑

j=1

|λnj| →
∑

|λj | a.s. (in pr)

n
∑

j=1

|λnj |2 →
∑

|λj |2 a.s. (in pr).

Proof. Since
∑

j=1

|λj | =

∫

Γ0(ξ, ξ)dµ(ξ)
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and
∑

j=1

|λj |2 =

∫∫

Γ0(ξ1, ξ2)
2dµ(ξ1)dµ(ξ2),

∣

∣

∣

∣

∣

∣

n
∑

j=1

|λnj | −
∞
∑

j=1

|λj|

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γn(ξ, ξ)dµ(ξ) −
∫

Γ0(ξ, ξ)dµ(ξ)

∣

∣

∣

∣

≤
∫

|Γn(ξ, ξ) − Γ0(ξ, ξ)| dµ(ξ)

≤ sup
ξ1,ξ2

‖Γn(ξ1, ξ2) − Γ0(ξ1, ξ2)‖

→ 0 a.s. (in pr).

Similarly,

∣

∣

∣

∣

∣

∣

n
∑

j=1

|λnj|2 −
∞
∑

j=1

|λj |2
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

Γn(ξ1, ξ2)
2dµ(ξ1)dµ(ξ2) −

∫∫

Γn(ξ1, ξ2)
2dµ(ξ1)dµ(ξ2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

(

(Γ0 − (Γ0 − Γn))
2 − Γ2

0

)

dµ(ξ1)dµ(ξ2)

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∫∫

Γ0(Γ0 − Γn)dµ(ξ1)dµ(ξ2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

(Γ0 − Γn)2dµ(ξ1)dµ(ξ2)

∣

∣

∣

∣

≤ 2 sup
ξ1,ξ2

|Γ0(ξ1, ξ2) − Γn(ξ1, ξ2)|
∫∫

Γ0dµ(ξ1)dµ(ξ2)

+ sup
ξ1,ξ2

|Γ0(ξ1, ξ2) − Γn(ξ1, ξ2)|2

→ 0 a.s. (in pr).

Let φi(ξ) and φni(ξ) be normalized eigenvectors corresponding to λi and λni

respectively, thus

φi(ξ) =
ψi(ξ)

‖ψi(ξ)‖2

, φni(ξ) =
ψni(ξ)

‖ψni(ξ)‖2

and ‖φi(ξ)‖ = ‖φni(ξ)‖ = 1 for all i and n.

When the multiplicity of the eigenvalue λi is larger than one, corresponding

normalized eigenvectors are not uniquely determined. Therefore we could not

have a convergence property for each corresponding eigenvector sequence. How-

ever the corresponding eigenspace is unique. Therefore next we think about the

convergence property of the projection operators that maps functions on the

eigenspace corresponding to the eigenvalue λi.

Let Pj(ξ1, ξ2) =
∑

k∈Ij
φk(ξ1)φk(ξ2) be an orthogonal projection operator

that maps L2(µ(ξ)) on the eigenspace corresponding to the eigenvalue λi, and
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Pnj(ξ1, ξ2) =
∑

k∈Ij
φnk(ξ1)φnk(ξ2) be an estimator of Pj . Note that the covari-

ance function Γ(ξ1, ξ2) and Γn(θ̂, ξ1, ξ2) could be decomposed as the followings,

Γ(ξ1, ξ2) =
∞
∑

j=1

λjPj(ξ1, ξ2)

Γn(θ̂, ξ1, ξ2) =
m
∑

j=1

λnjPnj(ξ1, ξ2).

Proposition 4. Suppose Assumption a.s. (Assumption pr) is satisfied. Then

for each j, Pnj converges Pj a.s. (in probability) in the uniform operator norm.

Proof. From the proof of Proposition 2, Γn converges to Γ a.s. (in probability)

in the uniform operator norm. In the proof of Proposition 3 in Dauxois, Pousse

and Romain (1982), they have shown that ‖Pnj − Pj‖F → 0 if ‖Γn − Γ‖F → 0.

We have proved the proposition.

When the multiplicity of the eigenvalue λi is equal to one, we could talk

about the convergence of eigenvectors. However if φi(ξ) is the normalized eigen-

vector corresponding to λi, −φi(ξ) also satisfies the characteristic equation and

‖−φi(ξ)‖2 = 1. So we need further specification. Choose one of normalized

eigenvector, named φ1
i (ξ), corresponding to λi and choose a sequence of eigen-

vectors φ1
ni(ξ) corresponding to λnj such that

〈

φ1
i (ξ), φ

1
ni(ξ)

〉

≥ 0.

Corollary 5. Suppose Assumption a.s. (or Assumption pr) is satisfied and the

multiplicity of the eigenvalue λi is one. Then φ1
ni(ξ) converges to φ1

i (ξ) a.s. (in

probability) on L2(µ(ξ)).

Proof. Since the multiplicity of the eigenvalue λi is 1, Pi(ξ1, ξ2) = φ1
i (ξ1)φ

1
i (ξ2)

and Pni(ξ1, ξ2) = φ1
ni(ξ1)φ

1
ni(ξ2). Then

‖Pi − Pnj‖F = sup
‖f‖

2
=1

∥

∥

∥

∥

∫

(

φ1
i (ξ1)φ

1
i (ξ) − φ1

ni(ξ1)φ
1
ni(ξ)

)

f(ξ1)dµ(ξ1)

∥

∥

∥

∥

2

= sup
‖f‖

2
=1

∥

∥

〈

φ1
ni, f

〉

φ1
ni −

〈

φ1
i , f
〉

φ1
i

∥

∥

2

≥
∥

∥

〈

φ1
ni, φ

1
i

〉

φ1
ni −

〈

φ1
i , φ

1
i

〉

φ1
i

∥

∥

2

=
(

1 −
〈

φ1
ni, φ

1
i

〉2
)1/2

=

(

1

2

∥

∥φ1
ni − φ1

i

∥

∥

2

2

(

1 +
〈

φ1
ni, φ

1
i

〉)

)1/2

≥ 0.

Now 1 +
〈

φ1
ni, φ

1
i

〉

≥ 1 by the construction of φ1
ni and ‖Pi − Pnj‖F converges

to zero a.s. (in probability). Therefore
∥

∥φ1
ni − φ1

i

∥

∥

2
converges to zero a.s. (in

probability).

8



4 Example: ICM test

Let wt = (yt, xt) be a sequence of i.i.d. random variables on R1 ×Rd. The ICM

test statistics for testing H0 : yt = Q(xt, θ0) + ut uses the random function

zn(ξ) =
1√
n

n
∑

t=1

(y −Q(xt, θ̂)) exp(ξ′Φ(xt)),

where θ̂ is the nonlinear least squares estimator of θ0 and Φ(x) is a bounded

one-to-one function on Rd → Rd. The test statistics is

Tn =

∫

zn(ξ)2dµ(ξ).

Under Assumption A in Bierens (1990), which is also included in Appendix A for

readers’ convenience, zn(ξ) converges a Gaussian process z(ξ) with covariance

function

Γ0(ξ1, ξ2) = E

[

u2
t

(

exp(ξ′1Φ(xt)) − b(θ0, ξ1)A
−1 ∂Q(xt, θ0)

∂θ

)

×
(

exp(ξ′2Φ(xt))− b(θ0 , ξ2)A
−1 ∂Q(xt, θ0)

∂θ

)]

,

where b(θ0, ξ) = E[(∂/∂θ)Q(xt , θ0) exp(ξ′Φ(xt))] and

A = E

[

∂Q(xt, θ0)

∂θ

∂Q(xt, θ0)

∂θ′

]

.

A natural estimator of Γ0(ξ1, ξ2) is

Γn(θ̂, ξ1, ξ2) =
1

n

n
∑

t=1

(

yt −Q(xt, θ̂)
)2
(

exp(ξ′1Φ(xt))− bn(θ̂, ξ1)An(θ̂)−1 ∂Q(xt, θ̂)

∂θ

)

×
(

exp(ξ′2Φ(xt)) − bn(θ̂, ξ2)An(θ̂)−1 ∂Q(xt, θ̂)

∂θ

)

,

where

bn(θ, ξ) =
1

n

n
∑

t=1

∂Q(xt, θ)

∂θ
exp(ξ′Φ(xt)),

An(θ) =
1

n

n
∑

t=1

∂Q(xt, θ)

∂θ

∂Q(xt, θ)

∂θ′
.

The low level assumptions for the consistency of the estimated eigenvalues and

the eigenvectors are not so restrictive. The following assumptions, which were

used in Bierens (1990) and Bierens and Ploberger (1997) to derive the asymp-
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totic distribution of the ICM test, ensure the consistency of the estimated eigen-

values, the projection operators and the eigenvectors.

Assumption ICM

1. Assumption A is satisfied

2. Ξ is a compact subset of Rd. The probability measure µ(ξ) is chosen

absolutely continuous with respect to Lebesgue measure.

Proposition 6. Assumption ICM implies Assumption a.s.

Proof. See Appendix B.

One application of estimated eigenvalues is to estimate critical values of the ICM

test. Bierens and Ploberger (1997) could not get critical values of their test since

it depends on the distribution of independent variables. They reported only case

independent upper bounds of the critical values. It might be too conservative.

It might be possible to apply Hansen’s bootstrapping method (Hansen 1996),

however it is very time consuming. With the estimated eigenvalues we could

estimate the critical values.

As shown in Bierens and Ploberger (1997), under the null hypothesis the

test statistics Tn converges to

Tn
d−→ q =

∞
∑

i=1

λiZ
2
i ,

where λis are the eigenvalues of Γ0 and Zi’s are independent standard normal

random variables.

Construct new random variable qn based on the estimated eigenvalues as the

following,

qn =
n
∑

i=1

λniZ
2
i ,

where λni’s are the eigenvalues of Γn. The critical values of Tn could be esti-

mated by the critical values of qn. The following theorem justifies the above

method.

Theorem 7. Suppose Assumption ICM is satisfied. Let {λj : j = 1, 2, . . . ,∞}
and {λnj : j = 1, 2, . . . , n} be the decreasing sequences of the eigenvalues of

Γ0(ξ1, ξ2) and Γn(θ̂, ξ1, ξ2) respectively and φq(t) and φqn
(t) be the characteristic

function of q and the conditional characteristic function of qn on Γn(θ̂, ξ1, ξ2)

respectively. Then

φqn
(t) → φq(t) a.s.

10



Proof. See Appendix B.

Consider local alternatives to the following form

Hn : yt = Q(xt, θ0) +
g(xt)√
n

+ ut, (7)

where g(x) satisfies 0 < E[g(x)2] <∞.

Under the local alternative (7), zn(ξ) converges to a Gaussian process with

mean function

η(ξ) = E

[

g(xt)

(

exp(ξ′1Φ(xt)) − bn(θ̂, ξ1)An(θ̂)−1 ∂Q(xt, θ̂)

∂θ

)]

and the covariance function Γ0(ξ1, ξ2) as shown in Theorem 2 of Bierens and

Ploberger (1997). Under the Assumption A and the local alternative assumpton,

It could be shown that

√
n(θ̂ − θ0)

d−→ N(E[g(xt)
∂Q

∂θ
], A−1E

[

u2
t

∂Q

∂θ

∂Q

∂θ′

]

A−1)

θ̂ → θ0 a.s.

Γn(θ, ξ1, ξ2) could be decomposed as the followings,

Γn(θ, ξ1 , ξ2) =
1

n

n
∑

t=1

(yt −Q(xt, θ))
2
w(xt, ξ1, θ)w(xt , ξ2, θ)

=
1

n

n
∑

t=1

(ut +Q(xt, θ0) −Q(xt, θ))
2
w(xt, ξ1, θ)w(xt , ξ2, θ)

+
2

n

n
∑

t=1

(ut +Q(xt, θ0) −Q(xt, θ))
g(xt)√
n
w(xt, ξ1, θ)w(xt, ξ2, θ)

+
1

n

n
∑

t=1

g(xt)
2

n
w(xt, ξ1, θ)w(xt , ξ2, θ),

where

w(xt, ξ1, θ) = exp(ξ′1Φ(xt)) − bn(θ, ξ1)An(θ)−1 ∂Q(xt, θ)

∂θ
.

Using the same argument in the proof of Theorem 7, the first term converges

to Γ(θ, ξ1, ξ2) a.s. uniformly on Ξ. The second and the third term converges to

zero a.s. uniformly on Ξ.

Therefore Γn(θ̂, ξ1, ξ2) converges to Γ0(ξ1, ξ2) a.s. uniformly on Ξ under

the local alternative. This implies that we can consistently estimate λis and

Theorem 7 also holds under the local alternative.
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5 Concluding Remarks

This paper introduces an estimation method of the eigenvalues and eigenvec-

tors from the sample covariance function, which involves estimated parameters.

Then prove the consistency of the estimated eigenvalues and the eigenvectors.

One drawback of the method is that it needs considerable computation time.

The estimated eigenvalues are the eigenvalues of the n× n matrix A where the

i-j element of A is
∫

an(θ̂, wi, ξ)an(θ̂, wj , ξ)dµ(ξ).

In general, it might be difficult to integrate analytically. We need about order

n× n times numerical integration to get A. Therefore some effective numerical

integration method or approximation method are required.

Unsolved problem is the asymptotic distribution of the estimated eigenval-

ues and eigenvectors. Some central limit theorems in Hilbert space might be

applicable. However, this further elaboration is beyond the scope of the present

paper.
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A Maintained Assumption for ICM test

The following is Assumption A in Bierens (1990).

Assumption A

1. Let {wt = (yt, xt)|i = 1, 2, . . . , n} be a sequence of i.i.d. random variable

on R×Rd. Moreover, E[y2
t ] <∞.

2. The parameter space Θ is a compact and convex subset of Rq and Q(xt, θ)

is for each θ ∈ Θ a Borel measurable real function on Rd and for each d-

vector x a twice continuously differentiable real function on Θ. Moreover,

E[supθ∈ΘQ(xt, θ)] <∞ and for i1, i2 = 1, 2, . . . , q,

E

[

sup
θ∈Θ

∂Q(xt, θ)

∂θi1

∂Q(xt, θ)

∂θi1

]

< ∞,

E

[

sup
θ∈Θ

(yt −Q(xt, θ))
2 ∂Q(xt, θ)

∂θi1

∂Q(xt, θ)

∂θi2

]

< ∞,

E

[

sup
θ∈Θ

(yt −Q(xt, θ))
∂2Q(xt, θ)

∂θi1∂θi2

]

< ∞.

3. E[(yt − Q(xt, θ))
2 ] takes a unique minimum on Θ at θ0. Under H0 the

parameter vector θ0 is an interior point of Θ.

4. A = E[(∂/∂θ)Q(xt , θ0)(∂/∂θ
′)Q(xt, θ0)] is nonsingular.

B Mathematical Proofs

Lemma 8. Suppose An(θ) and Bn(θ) be random functions on a compact subset

Θ ⊂ Rk, and An(θ) and Bn(θ) converges to nonrandom continuous functions

A(θ) and B(θ) a.s. uniformly on Θ respectively. Then An(θ)Bn(θ) converges to

A(θ)B(θ) a.s. uniformly on Θ.

Proof. There are null set N1 and N2 such that for every ε > 0 and every

ω ∈ Ω \ (N1 ∪N2) ,

sup
θ∈Θ

|An(ω, θ) − A(θ)| ≤ ε and sup
θ∈Θ

|Bn(ω, θ) −B(θ)| ≤ ε if n > n0(ω, ε).

Since A(θ) and B(θ) are continuous function on a compact set Θ, there is M

such that supθ∈Θ |A(θ)| < M and supθ∈Θ |B(θ)| < M . And for every ω ∈

14



Ω \ (N1 ∪N2),

sup
θ∈Θ

|An(θ)Bn(θ) − A(θ)B(θ)|

≤ sup
θ∈Θ

|An(θ) −A(θ)| sup
θ∈Θ

|B(θ)| + sup
θ∈Θ

|Bn(θ) −B(θ)| sup
θ∈Θ

|A(θ)|

+ sup
θ∈Θ

|An(θ) −A(θ)| sup
θ∈Θ

|Bn(θ) −B(θ)|

≤ 2Mε + ε2

if n > n0(ω, ε). Thus supθ∈Θ |An(θ)Bn(θ) −A(θ)B(θ)| → 0 a.s.

Theorem 9. (theorem 2.7.5 Bierens 1994) Let X1,X2, . . . be a sequence of

i.i.d. random variable in Rd. Let f(x, θ) be a Borel measurable function con-

tinuous on Rd × Θ, where Θ is a compact Borel set in Rk, which is continuous

in θ for each x ∈ Rd. If E[supθ∈Θ |f(Xj , θ)|] < ∞, then 1
n

∑n
i=1 f(Xi, θ) →

E[f(x, θ)] a.s. uniformly on Θ.

Proof of Proposition 6

Proof. Almost sure convergence of θ̂ and Γn(θ̂, ξ1, ξ2) → Γ0(ξ1, ξ2) a.s. point

wisely satisfied under Assumption A using standard argument. So we concen-

trate a.s. uniform convergence of Γn(θ, ξ1 , ξ2).

We could decompose Γn(θ, ξ1, ξ2) as the followings,

Γn(θ, ξ1 , ξ2) =
1

n

n
∑

t=1

(yt −Q(xt, θ)
2) exp(ξ′1Φ(xt)) exp(ξ′2Φ(xt)) : Γ1

n

−bn(θ, ξ1)An(θ)−1 1

n

n
∑

t=1

∂Q(xt, θ)

∂θ′
(yt −Q(xt, θ) exp(ξ′2Φ(xt)) : bnA

−1
n Γ2

n

−bn(θ, ξ2)An(θ)−1 1

n

n
∑

t=1

∂Q(xt, θ)

∂θ′
(yt −Q(xt, θ) exp(ξ′1Φ(xt)) : bnA

−1
n Γ2

n

+bn(θ, ξ1)An(θ)−1bn(θ, ξ2).

Because of lemma 8, it is enough to show that

Γ1
n(θ, ξ1 , ξ2) → E[(yt −Q(xt, θ))

2 exp(ξ′1Φ(xt)) exp(ξ′2Φ(xt))] (8)

a.s. uniformly

Γ1
n(θ, ξ1 , ξ2) → E

[

∂Q(xt, θ)

∂θ′
(yt −Q(xt, θ) exp(ξ′Φ(xt))

]

(9)

a.s. uniformly

bn(θ, ξ) → E

[

∂Q(xt, θ)

∂θ
exp(ξ′Φ(xt))

]

a.s.uniformly (10)

An(θ) → E

[

∂Q(xt, θ)

∂θ

∂Q(xt, θ)

∂θ′

]

a.s.uniformly. (11)
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Since Ξ is compact and Φ(x) is a bounded function, there exists M such that

for all x, | exp(ξ′Φ(x))| < M . Thus

E

[

sup
θ,ξ1,ξ2

∣

∣(yt −Q(xt, θ))
2 exp(ξ′1Φ(xt)) exp(ξ′2Φ(xt))

∣

∣

]

≤ M2E

[

sup
θ

(yt −Q(xt, θ))
2

]

≤ 2M2E[y2
t ] + 2ME

[

sup
θ
Q(xt, θ)

2

]

< ∞,

by Assumption A.1 and A.2. Therefore (8) is satisfied by Theorem 9.

Similarly,

E

[

sup
θ,ξ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ
(yt −Q(xt, θ)) exp(ξ′Φ(xt))

∣

∣

∣

∣

]

≤ ME

[

sup
θ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ
(yt −Q(xt, θ))

∣

∣

∣

∣

]

≤ M

(

E

[

sup
θ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ

∣

∣

∣

∣

2
])1/2

(

E

[

sup
θ

∣

∣(yt −Q(xt, θ))
2
∣

∣

])1/2

< ∞,

by Assumption A.1 and A.2. (9) is satisfied.

For bn(θ, ξ),

E

[

sup
θ,ξ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ
exp(ξ′Φ(xt))

∣

∣

∣

∣

]

≤ ME

[

sup
θ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ

∣

∣

∣

∣

]

≤ ME

[

sup
θ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ

∣

∣

∣

∣

2
]1/2

E

[

sup
θ

∣

∣

∣

∣

∂Q(xt, θ)

∂θ

∣

∣

∣

∣

2
]1/2

< ∞,

by Assumption A.2. Therefore (10) is satisfied by Theorem 9. And (11) also

satisfied by Assumption A.2 and Theorem 9.

Then (8)-(11) were all satisfied. Thus by lemma 8, Γn(θ, ξ1, ξ2) → Γ(θ, ξ1 , ξ2)

a.s. uniformly on Θ× Ξ × Ξ. We have proved the proposition.

Proof of Theorem 7
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Proof. The characteristic function of q is

φq(t) =
∞
∏

j=1

(1 − 2iλjt)
−1/2,

and the conditional characteristic function of qn on Γn is

φqn
(t) =

∞
∏

j=1

(1 − 2iλnjt)
−1/2,

where i =
√
−1 and λnj = 0 if j > n. It is enough to show that

log φqn
(t) → log φq(t) a.s. (12)

First, we prove that

−1

2

∞
∑

j=1

{log(1 − 2iλnjt) + 2iλntt} → −1

2

∞
∑

j=1

{log(1 − 2iλj t) + 2iλtt} a.s.

(13)

as n increases. Let decompose the difference between the both side of the above

equation as the following, take a large enough integer r then

−1

2

∞
∑

j=1

{log(1 − 2iλnjt) + 2iλntt} +
1

2

∞
∑

j=1

{log(1 − 2iλjt) + 2iλtt}

= −1

2

r
∑

j=1

{log(1 − 2iλnjt) + 2iλntt} +
1

2

r
∑

j=1

{log(1 − 2iλjt) + 2iλtt} : Sr

−1

2

∞
∑

j=r+1

{log(1 − 2iλnjt) + 2iλntt} +
1

2

∞
∑

j=r+1

{log(1 − 2iλjt) + 2iλtt} : Rr

= Sr +Rr.

Since λnj converges to λj by Proposition 2, choosing large enough n we get

|Sr| < ε.

On the other hand there is a constant C1 that satisfies

| log(1 − 2iλt) + 2iλt| < C1λ
2t2.
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Therefore

|Rr| ≤ C1t
2

∞
∑

j=r+1

λ2
nj + C1t

2
∞
∑

j=r+1

λ2
j

≤ C1t
2λn(r+1)

∞
∑

j=1

λnj + C1t
2λr+1

∞
∑

j=1

λj

since λnj and λj are decreasing sequence. By Proposition 2, λnj converges to λj

uniformly in j almost surely and
∑∞

j=1 λnj converges to
∑∞

j=1 λj almost surely

by Proposition 2,

lim
r→∞

|Rr| = 0 a.s.

Thus (13) is satisfied.

Next, we will show that

−1

2

n
∑

j=1

log(1 − 2iλnjt) → −1

2

∞
∑

j=1

log(1 − 2iλj t) a.s.

The left hand side converges to

−1

2

n
∑

j=1

log(1 − 2iλnjt) = −1

2

n
∑

j=1

{log(1 − 2iλnjt) + 2iλnjt}+
1

2
2it

n
∑

j=1

λnj

→ −1

2

∞
∑

j=1

{log(1 − 2iλjt) + 2iλjt} +
1

2
2it

∞
∑

j=1

λj a.s.

by (13) and Proposition 3. On the other hand,

lim
n→∞

−1

2

n
∑

j=1

log(1 − 2iλjt) = lim
n→∞







−1

2

n
∑

j=1

{log(1 − 2iλjt) + 2iλj t} +
1

2
2it

n
∑

j=1

λj







= lim
n→∞







−1

2

n
∑

j=1

{log(1 − 2iλjt) + 2iλj t}







+ lim
n→∞

1

2
2it

n
∑

j=1

λj

since the both term in the last equation converge. This implies that

−1

2

n
∑

j=1

log(1 − 2iλnjt) → −1

2

∞
∑

j=1

log(1 − 2iλj t) a.s.

We have proved.
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