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Abstract

This article compares pricing performances of two representative op-

tion pricing models under stochastic volatility, i.e., log-volatility model and

square-root volatility model, by employing Japanese Nikkei 225 index op-

tions data. We estimate the parameters of volatility process by adopting

Monte Carlo filter approach of Kitagawa (1996) and compare the option

pricing performances of alternative option pricing models over both in-

sample and out-of-sample period. The results show that incorporating

stochastic volatility into option pricing model significanly improves pricing

performace relative to Black-Scholes model, and in particular, square-root

volatility model outperforms log-volatility model.
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1 Introduction

The option pricing under stochastic volatility is one of the relatively longstand-

ing topics in finance literature. The empirical observations of underlying return

process have called for option pricing model accommodating stochastic structure

of the volatility. In option pricing model, the volatility process has been usually

imposed as an additional state variable. However, the specification of unobserv-

able volatility process is more or less an empirical issue rather than economic

reasoning.1

Since the seminal work of Hull and White (1987), two option pricing models

under stochastic volatility have been popularized. The first strand of the liter-

ature is to specify that the log-volatility follows mean-reverting process. This

model has been discussed by Scott (1987), Chesney and Scott (1989), and Melino

and Turnbull (1990), etc. Many empirical studies equipped with newly coined

techniques have focused on this model since the discrete version can be easily

converted into state space form with AR(1) state process. For example, see Har-

vey, Ruiz and Shephard (1994), Ghysels, Harvey and Renault (1996), and the

references therein. Nevertheless, in this case, the closed-form expression of op-

tion pricing formula is not available, and consequently, researchers usually resort

to Monte Carlo simulation and/or numerical techniques.

The second study is to assume that the squared-volatility obeys square-root

process. This model provides a closed-form expression of option value with

Fourier inversion involved. Since Heston (1993), theoretical improvements cover-

ing jump behavior of underlying asset, for example have been accomplished. See

Scott (1997), Bakshi and Chen (1997), Heston and Nandi (2000), and Duffie, Pan

and Singleton (2000), for instance. Many financial economists have investigated

this type of model based on cross sectional analysis which is the standard practice

of extracting information from the market prices of traded options, and concluded

1Of course, the endogenous volatility process of asset return can be also derived in the

general equilibrium context.
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that accommodating stochastic volatility into option pricing contributes to the

improvement of pricing performance. In this regard, Bates (1996), Bakshi, Cao

and Chen (1997), and Nandi (1998) are notable studies.

We will investigate aforementioned two option pricing models by comparing

their pricing performances in Japanese security market. Notwithstanding the

abundance of empirical analysis of the so called stochastic volatility model (the

discrete time equivalent of log-volatility model), the option pricing performance

using these estimation results has not extensively explored, except some early

period studies such as Scott (1987), Melino and Turnbull (1990). In contrast,

the square-root volatility model have been investigated extensively by implied

parameters approach. It is also generally agreed that the option pricing model

incorporating the square-root volatility process enhances the pricing performance

relative to Black-Scholes model. This unbalanced amount of empirical results

seems to be due to the fact that the square-root volatility model has the closed-

from expression of option value. In addition, two models have not been compared

yet. These facts motivate this study.

Using the Nikkei 225 index returns data, we estimate the parameters of volatil-

ity process by adopting Monte Carlo filter method of Kitagawa (1996). This ap-

proach is based on a Monte Carlo method in which successive prediction, filtering,

conditional probability density functions are approximated by many of their re-

alizations. This method can be applied to a broad class of nonlinear no-Gaussian

state space model. Next, the market price of volatility risk is estimated by using

options data and parameters estimates. Then, the parameter estimates together

with risk premium of volatility allow us to compare pricing performances of alter-

native option models. However, as mentioned before, the explicit option pricing

formula under log-volatility process is not available. To circumvent this valuation

problem, we employ an approximate valuation approach suggested by Kunitomo

and Kim (2001).

The plan of this chapter is as follows. Section 2 discusses option pricing under
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two alternative volatility processes. The econometric methodology is addressed

in section 3. Section 4 describes sample data. Section 5 reports the empirical

results. Section 6 concludes. Finally, section 7 gives brief appendices.

2 Option Pricing under Stochastic Volatility

2.1 Option Pricing under Log-Volatility Process

Let us consider the economy where there are two primitive assets, i.e., the stock

and money market account. The stock price St obeys the stochastic differential

equation

dSt = µ(St, Vt, t)Stdt+ σtStdW1t, (1)

where the volatility σt is generated by

d log σt = κ(θ − log σt)dt+ δ dW2t, (2)

or, equivalently

dσt = κ(θ +
1

2 κ
δ2 − log σt) σt dt+ δ σt dW2t (3)

for constants κ, θ, and δ. The return process and its volatility are assumed to

have a constant correlation i.e., E[dW1t dW2t] = ρ dt. We assume that the interest

rate r is constant and the stock generates a constant dividend yield d. The setup

of (1) and (2) has been investigated by Wiggins (1987), Scott (1987), Chesney

and Scott (1989), Scott (1991), and Melino and Turnbull (1990) in evaluating

stock and currency options. 2

We consider a European call option on the security S with expiration date

T , whose price is denoted by C(St, σt, τ) with τ ≡ T − t and exercise price K.
2In replacement of (2), some researchers assume that the log-‘variance’ follows mean-

reverting process:

d log σ2
t = κ(θ − log σ2

t )dt+ δdW2t. (4)

The assumption of (4) seems to be largely motivated by econometric tractability. See, Harvey,

Ruiz and Shephard (1994), for example.
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¿From the general equilibrium argument (for example, Cox, Ingersoll and Ross

(1985)), the fundamental partial differential equation for a European call option

pricing function C(St, σt, τ) becomes

1

2
σ2S2CSS + ρδσ2SCSσ +

1

2
δ2σ2Cσσ + (r − d)SCS

+
[
σ κ(θ +

δ2

2 κ
− log σ)− λ∗(σ)

]
Cσ − r C − Cτ = 0, (5)

with initial boundary condition C(St, σt, 0) = max[ST − K, 0], where the sub-

scripts on C represent partial derivatives with respect to each variables and λ∗(σ)

is the risk premium associated with stochastic volatility. Following Melino and

Turnbull (1990), we set λ∗ = λ δ σt for constant λ.

The equation (5) also gives the option value which is represented by

C(St, σt, τ) = Ẽt[exp(−r τ)max[ST −K, 0]], (6)

where Ẽ is the risk-adjusted expectations operator and the risk adjustment is

embodied in two state variables S and σ:

dSt = (r − d)Stdt+ σtStdW1t (7)

and

d log σt = κ(θ∗ − log σt)dt+ δ dW2t, (8)

where θ∗ = θ − λ δ
κ
, or, equivalently

dσt = κ(θ∗∗ − log σt)σt dt+ δ σt dW2t, (9)

where θ∗∗ = θ∗ + δ2

2 κ
.

For the calculation of option value under log-volatility process, we adopt an

approximation approach called small disturbance expansion approach proposed

by Kunitomo and Kim (2001), and Kim (2001). It should be noted that in

our setting we have C(St, σt, τ) = exp(−d τ)Ĉ(St, σt, τ ; r̂) with r̂ ≡ r − d, since

the interest rate r is assumed to be constant. Using (7) and (9), and following
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Kunitomo and Kim (2001) provide the expression for option value:

Ĉ(S, σ, τ ; r̂) = [S0 Φ(d1)−K exp(−r̂ τ)Φ(d2)] + δ S0 φ(d1)
[ a12√

Σ
− a11

Σ
d2

]
+ o(δ),

(10)

where Φ(·) is the distribution function of standard normal variable and φ(·) is its
density function. The integrated variance through time to expiration, Σ, is equal

to
∫ T
0 σ̄2

t dt, where

σ̄t = exp[exp(−κ t)(log σ0 − θ) + θ].

In addition, d1 is given by

d1 =
1√
Σ

[
log

S0

K
+ r̂ τ +

1

2
Σ
]

and d2 = d1 −
√
Σ. The remaining coefficients a11 and a12 are given as follows:

a11 = ρ
∫ T

0
σ̄tYt

∫ t

0
Y −1

s σ̄2
s ds dt

and

a12 = −λ
∫ T

0
σ̄tYt

∫ t

0
Y −1

s σ̄s ds dt,

where

Yt = exp [(log σ0 − θ)(exp(−κ t)− exp(−κ)) + κ(1− t)] .

More tractable expressions of Σ, a11, and a12 are provided in Appendix.

2.2 Option Pricing under Square-Root Volatility Process

Heston (1993) (in a similar fashion, Bates (1996), Scott (1997), Bakshi, Cao and

Chen (1997), and Duffie, Pan and Singleton (2000) in an extended stochastic

environment) assumed that the volatility obeys

d σ2
t = κ(θ − σ2

t )dt+ δ σt dW2t, (11)

with E[dW1tdW2t] = ρ dt. Following Heston (1993), the risk premium on the

volatility risk is assumed to be proportional to the conditional variance, i.e.

λ(σ2
t ) = λ σ2

t for constant λ. In this case, the closed form expression of option

value can be available. We reproduce the option pricing formula in Appendix for

convenience.
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3 Econometric Methodology

Our test methodology takes the following steps. In the first step, the parameters

of volatility process based on underlying return process are estimated. In the next

step, we estimate the parameter of risk premium of volatility using the options

data and the estimates of volatility parameters. In the final step, the pricing

performances of in-sample and out-of-sample are compared after the pricing error

measures have been defined.

3.1 Estimation of Volatility Parameters

First, consider the log-volatility model. We simply discretize the return process

(1) and the volatility process (2):

Rn� ≡ Sn� − S(n−1)�
S(n−1)�

= µ(·)�+ σn� ε1,n� (12)

and

log σn� = log σ(n−1)� + [κ θ − κ log σ(n−1)�]�+ δ
√
� (ρε1,n� +

√
1− ρ2 ε2,n�),

(13)

where ε1,n� and ε2,n� are two independent standard normal variables, � denotes

time interval, and n is the positive integer.3 We set the trade days in a year to be

250 days and therefore� = 1/250. We should note that more natural approxima-

tions rather than (12) and (13) can be possible because the solutions of original

SDEs are available. However, because the solution of square-root volatility is not

known, the simple scheme (13) will be used for comparison purpose.

In principle, the specification of µ(·) is problematic, because the option price

(which is in itself not the function of µ(·) ) is affected by way of parameters of

3To be precise, the σn� in (12) should be expressed by σ(n−1)� due to the Euler-Maruyama

approximation. Taylor (1994) referred to (12) and (13) as Contemporaneous Autoregressive

Random Variance Model (in short, CARV), and one-lag volatility version of (12) and (13) as

Lagged ARV (LARV). Scott (1987) used CARV, whereas Chesney and Scott (1989) used LARV,

for example.
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volatility process which is, in turn, influenced by the specification of the drift

of return process. This issue is also spelled out in detail in the next section.

We newly define the observation process as yn� ≡ Rn� − µ(·)�. We also set

xn� ≡ log σn�.

Let Ψ denote (κ, θ, δ, ρ). We estimate Ψ by Monte Carlo filter/smoother

approach developed by Kitagawa (1996). In this method, each distribution is

expressed by many of its realizations, and the trajectory of each particle in suc-

cessive prediction stages is simulated by using assumed model. In the filtering

stage, the resampling with a weight proportional to the likelihood is performed

to get a set of particles that represents the filter distribution.

If we define Yn′� as the set of observations {y1�, · · · , yn′�}, the conditional

density p(xn�|Yn′�) is called the predictor, the filter, and the smoother, respec-

tively corresponding to the three distinct cases , n > n′, n = n′, and n < n′.

Monte Carlo filter/smoother approximate the distributions by empirical distribu-

tions determined by the set of particles. LetN be the number of data observations

and m the number of particles. We denote the particles of predictor and filter by

p
(j)
n� and f

(j)
n� for each day n and j = 1, · · · , m.

Monte Carlo filtering can be conducted by adopting the following 2 steps.

1. Generate a random number f
(j)
0� ∼ N(θ, δ2

2 κ
) for j = 1, · · · , m, where N(·, ·)

is normal distribution function.

2. Repeat the following steps for n = 1, · · · , N .

(a) Generate two independent standard normal variables ε
(j)
1,n� and ε

(j)
2,n�

for j = 1, · · · , m.

(b) Compute p
(j)
n� = f

(j)
(n−1)�+[κθ−κf

(j)
(n−1)�]�+δ

√� (ρ ε1,n�+
√
1− ρ2 ε2,n�)

for j = 1, · · · , m. 　

(c) Compute a
(j)
n�= φ(yn� exp(−p

(j)
n�)) · | exp(−p

(j)
n�)| for j = 1, · · · , m,

where φ(·) is the standard normal density function.
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(d) Generate f
(j)
n� ∼ (

∑m
i=1 a

(i)
n�)

−1∑m
i=1 a

(i)
n�I(x, p

(i)
n�) for j = 1, · · · , m by

the resampling of p
(1)
n�, · · · , p(m)

n� .

In step 1, we set the initial filter to follow the steady state distribution of OU

process.

The maximum likelihood estimates of parameters Ψ can be estimated by max-

imizing the log-likelihood l(Ψ):

l(Ψ) =
N∑

n=1

log p(yn|Yn−1) ∼=
N∑

n=1

log(
m∑

j=1

a(j)
n )−N logm. (14)

We obtain the maximum likelihood estimates by a grid search.

The estimation of square-root volatility model can be done similarly. The

square-root volatility (11) is also discretized as

σ2
n� = σ2

(n−1)�+ [κ θ−κ σ2
(n−1)�]�+ δσ(n−1)�

√
� (ρε1,n�+

√
1− ρ2 ε2,n�). (15)

We set xn� ≡ σ2
n�. The monte carlo filtering are modified as follows.

1. Generate a random number f
(j)
0� ∼ Ga(2κθ

δ2 ,
2κ
δ2 ) for j = 1, · · · , m, where

Ga(·, ·) is gamma distribution function.

2. Repeat the following steps for n = 1, · · · , N .

(a) Not changed

(b) Compute p
(j)
n� = f

(j)
(n−1)�+ [κθ−κf

(j)
(n−1)�]�+ δ

√
f

(j)
(n−1)�

√� (ρ ε1,n�+
√
1− ρ2 ε2,n�) for j = 1, · · · , m. 　

(c) Compute a
(j)
n�= φ(yn�/

√
p

(j)
n�) · |1/

√
p

(j)
n�| for j = 1, · · · , m, where φ(·)

is the standard normal density function.

(d) Not changed

In step 1, we set the initial filter to follow the steady state distribution of

square-root process. To compare the goodness of the fit of two candidate models,

the Akaike’s Information Criterion (AIC), defined by AIC = −2·l(Ψ̂)+2·#(Ψ) is
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evaluated. We use routines ran2 and gamdev in Press et. al. (1992) as random

uniform and normal deviates, respectively and GAMMA(S) in Dagpunar (1988)

as random gamma deviate.

3.2 Estimation of Risk Premium

For the estimation of risk premium of volatility λ, options data over the estimation

period should be utilized. To this end, we simply adopt the nonlinear least squares

regression whose estimator is obtained by solving the problem:

λ = argmin
λ

N∑
n=1

Mn∑
i=1

(
C(in; Ψ̂, σ̂n)

S(in)
− C(in)

S(in)

)2

, (16)

where C(in) (res.S(in)) is the option price (res. stock price) observed at time

n�. We assume that the error term is i.i.d. random variable with mean 0.

It is expected that both observed and theoretical option price normalized by

stock price ensure this assumption of the error term. The standard error of λ

is calculated based on (4.3.21) in Amemiya (1985). The nonlinear least squares

estimator applied to (16) is obtained using at-the-money options data.

3.3 Pricing Performance Measure

We provide three pricing performance measures over the test period. The first

and second one are yen-basis pricing errors, and the last one is relative error.

First, using the estimates of Ψ, λ and σn for n = 1, ..., N , we calculate Mean

Absolute Error of option pricing (in short, MAE) defined by

MAE =
1∑N

n=1 Mn

N∑
n=1

Mn∑
i=1

|C(in)− C(in; Ψ̂, λ̂, σ̂n)|, (17)

where C(in) is the ith option price observed at time n and Mn is the number of

observations at time n.

Second, we also provide Root Mean Squared Error of option pricing (in short,

RMSE) defined by

RMSE =

√√√√ 1∑N
n=1 Mn

N∑
n=1

Mn∑
i=1

[
C(in)− C(in; Ψ̂, λ̂, σ̂n)

]2
, (18)
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Finally, Root Mean Squared Error Relative to option price (in short, RMSER)

is given as follows:

RMSER =

√√√√√ 1∑N
n=1 Mn

N∑
n=1

Mn∑
i=1

[
C(in)− C(in; Ψ̂, λ̂, σ̂n)

C(in)

]2

. (19)

In calculating (17), (18), and (19), over out-of-sample period, we execute

Monte Carlo filter to obtain the volatility estimates by utilizing the estimates of

volatility parameters. For comparison purpose, we also set up 40 and 20 trade

day historical volatilities, over test period.

4 Data

As sample data, we employ daily closing Nikkei 225 index and its option contracts

written on the index. The source of our data is the Osaka Security Exchange.

The sample covers the time period from January 4, 1991 until June 30, 1998

(Entire Period). The parameters of option pricing models are estimated using

the data over January 4, 1991 to December 30, 1997 (Estimation Period). We set

aside the six months period around the last day of estimation period, December

30, 1997 for evaluating pricing error. We call the test period before (respectively,

after) December 30, 1997 in-sample period (respectively, out-of-sample period).

As the proxy for the unobservable short rate, one month CD rate is adopted.

The dividend yield data is taken from the predicted average dividend yield data

(Yoso-kijun Heikin Rimawari, which is announced by Nihon Keizai Shimbun on

every trading day).

Table 1, Table 2 and Table 3 exhibit the descriptive statistics of underlying

return series. The salient feature of statistics is that the rate of return process

shows second or third order autocorrelation although higher order autocorrela-

tions are not significant. Since the continuous time option pricing model admits

no autocorrelation of rate of return, autocorrelations are filtered off by AR(3) es-

timates. That is, we use the disturbance series of AR(3) model as rate of return

series to be estimated.
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¿From Table 3, we observe that Ljung-Box Qs of the resultant return series

drop significantly. This procedure can be justified by the fact that option pricing

formulas are determined irrespective of the form of return process drift function.

However we also should notice that aforementioned AR(3)-adjustment procedure

is only one candidate strategy for removing autocorrelation, and option pricing

formulas could be indirectly affected by the specification of the drift by way of

the parameter estimates of the volatility process.4

The mean and standard deviation of original (respectively, AR(3)-adjusted)

return series are −0.0916 (respectively, 0.0000) and 0.2262 (respectively, 0.2254)

in annual basis. See also Figure 1.

Table 1: Descriptive Statistics of Nikkei 225 index Rate of Return

Raw implies the rate of return on Nikkei 225 index from January 7, 1991 through December

30, 1997. Adjusted stands for the autocorrelation-adjusted disturbance series as the result of

AR(3) estimation.

Sample Mean(%) Std. Dev. Skewness Kurtosis Min Max

Raw 1726 -0.0366 0.0143 0.1032 5.6044 -0.0633 0.0737

Adjusted 1723 0.0000 0.0143 0.0744 5.5475 -0.0643 0.0734

Table 2: Parameter estimates of AR(3) model

Rn = a0+ a1Rn−1+ a2Rn−2+ a3Rn−3+ εn is estimated. The estimates are of percentage unit.

s.e. implies White’s heteroscedasticity-consistent standard error.

a0 a1 a2 a3

estimates -0.0372 -3.8721 -5.7017 0.7738

s.e. 0.0340 3.1848 3.1132 3.1321

4Lo and Wang (1995) specified the drift function as the trending O-U process and inves-

tigated the effect of this specification on the Black and Scholes value. Hafner and Herwartz

(2001) also utilized this trend reversion process to capture the implication of autoregressive

dynamics on the option value under stochastic volatility.
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Table 3: Autocorrelation of Rate of Returns

Raw implies the rate of return on Nikkei 225 index from January 7, 1991 through December

30, 1997. Adjusted stands for the autocorrelation-adjusted disturbance series as the result of

AR(3) estimation.

Lag Autocorrelation Ljung-Box Q χ2
0.05(Lag)

Raw Adjusted Raw Adjusted

1 -0.036 -0.0001 2.203 0.0000 3.841

2 -0.056 0.0009 7.590 0.0013 5.991

3 0.012 0.0024 7.830 0.0112 7.815

4 0.016 0.0143 8.277 0.3654 9.488

5 0.011 0.0086 8.499 0.4920 11.071

6 -0.010 -0.0055 8.672 0.5453 12.592

7 -0.006 -0.0012 8.735 0.5477 14.067

8 0.008 0.0069 8.849 0.6294 15.507

9 0.013 0.0131 9.150 0.9262 16.919

10 -0.003 -0.0011 9.162 0.9281 18.307

11 0.017 0.0163 9.670 1.3907 19.675

12 0.015 0.0158 10.083 1.8267 21.026
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For the test period, we divide options data into several categories according

to either moneyness and/or time to expiration. At-the-money sample is assumed

to satisfy 0.97 ≤ S/K ≤ 1.03. Out-of-the-money (respectively, in-the-money )

sample is set to satisfy S/K < 0.97 (respectively, 1.03 < S/K). The longest

time to maturity of Nikkei 225 index option is four months in calendar day. It

is relatively short in comparison with those of US and other European countries.

Hence we divide the entire samples into short and medium term options according

to time to expiration. The short term option has maturity time less or equal to

60 days. The medium term option takes 60 days to four months to mature. In

addition, options whose price is less or equal to 5 yen are excised because these

options have minor impacts on pricing errors.

5 Pricing Performance Results

5.1 The Estimates of Volatility Process

The estimates of volatility parameters are given in Table 4. It is worth while

to remark some features of the results. Firstly, the estimates of θ imply that

the long-term level of volatility of log-volatility model (respectively, square-root

volatility model) is 22.3% (respectively, 20.0%), which is close to the sample

counterpart. Secondly, the correlations of stock return and the volatility process

in both model are negative, which is consistent with other empirical findings.

Finally, from the AIC criteria, the log-volatility model shows only slightly better

goodness of the fit than the square-root volatility model. 5

The estimated volatility level, per se is critical inputs in pricing options. The

two stochastic volatilities of option pricing models over the entire period including

out-of-sample period are shown in Figure 2 and Figure 3. Meanwhile, investors in

5In this study, we do not discuss the reliability of estimates because our main concern is to

examine the pricing performances. However, smoothing scheme of self-organizing state space

model proposed by Kitagawa (1998) may give a guidance for this issue, for example.
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Table 4: The Estimates of Volatility Parameters

The parameters of volatility, Ψ ≡ (κ, θ, δ, ρ), are estimated by using the autocorrelation-
corrected rate of return on Nikkei 225 stock index running from January 10, 1991 through

December 30, 1997, 1723 time series observations.

Model κ θ δ ρ Log L AIC

Log-Volatility 0.54 -1.50 0.99 -0.20 5047.7897 -10087.5794

Square-Volatility 3.40 0.04 0.45 -0.10 5046.8223 -10085.6446

the Black-Scholes world generally use the historical volatility as the estimate of

unique unobservable volatility parameter. It is generally argued that the implied

volatility is also commonly used as the estimates of the volatility and pricing bias

of Black-Scholes pricing formula is smaller than the case of historical volatility.

This chapter focuses on the option pricing performances based on time series

data. In this respect, we do not consider the benchmark Black-Scholes value

based on the implied volatility using cross-sectional options data. For the implied

parameters approach, see Bakshi, Cao and Chen (1997), and Nandi (1998), for

example. In general, there is no established rule as to the time span which

investors should take into account in estimating historical volatility. Therefore,

we provide 40 and 20 trade day historical volatility to accommodate the ambiguity

of historical volatility time span. The filtered volatility and historical volatility

over in-sample and out-of-sample are depicted in Figure 4 and Figure 5. These

results tell us that 40 trade days historical volatility is underestimated relative

to the volatilities of stochastic volatility over in-sample period, while 20 trade

days historical volatility is overestimated relative to the volatilities of stochastic

volatility over out-of-sample period.

The remaining input for option pricing, the market price of volatility risk is

given in Table 5. The risk premium of log-volatility (respectively, square-root

volatility) is -0.2406 (respectively, -1.2146) and significant. Remind that negative

values of λ induce higher option prices. The risk premium is estimated using
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the estimates of volatility parameters, the filtered volatility and options prices

over July 1, 1992 to December 30, 1997. As options data, we used at-the-money

samples which satisfy 0.98 ≤ St/K ≤ 1.2.6

Table 5: The Estimates of Risk Premium

Based on nonlinear least squares regression, the risk premium λ is estimated by utilizing the

estimates ψ and employing the options data from July 1, 1992 through December 30, 1997,

6,183 number of observations. SSR represents sum of squared residuals and s.e. denotes the

standard error following (4.2.23) of Amemiya (1985). For the estimation of λ, Nikkei 225 index

options with 0.98 ≤ St/K ≤ 1.2 are used.

Model λ s. e. SSR

Log-Volatility -0.2406 0.0293 0.2820

Square-Volatility -1.2146 0.0554 0.1962

5.2 In-Sample Performance

We have set the in-sample period to be July 1, 1997 to December 30, 1997,

the last six calendar days of parameter estimation period. Table 6 provides the

pricing performances of stochastic volatility option pricing models and Black-

Scholes model.

The main results can be described as follows. Firstly, incorporating two

stochastic volatility structures into option pricing models largely improves the

pricing performance of the original Black and Scholes model. For 2558 total sam-

ples, MAEs of log and square-root volatility model are 82.774 and 67.351 while

those of Black and Scholes model with 40 and 20 trade day historical volatility

are 105.292 and 123.105, respectively. Similarly, RMSEs (respectively, RMSERs

) of stochastic volatility model are 126.746 and 102.501 (respectively, 0.482 and

6The Nikkei 225 index option market has started as the near-American style option market

on June 12, 1989 and completely shifted to European style option market on June 12, 1992.

This fact is one of reasons why our options data begins from July 1, 1992.
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0.383), while those of Black and Scholes model are 153.341 and 193.306 (respec-

tively, 0.645 and 1.007). Furthermore, this results hold irrespective of moneyness

and time to maturity.

Secondly, among option pricing models under two stochastic volatilities, the

one under square-root volatility shows better performance. However, remind that

for the goodness of the fit of return process, the log-volatility model is slightly

better than the square-root volatility model.

Finally, the Black and Scholes model based on 20 trade days historical volatil-

ity shows the worst performance. This implies that Black and Scholes model is

very sensitive to the time span of historical volatility.

To be summarized, it can be said that incorporating stochastic volatility into

option pricing model significantly improves pricing performance relative to Black-

Scholes model, and in particular, square-root volatility model outperforms log-

volatility model.

5.3 Out-of-Sample Performance

We have set the out-of-sample period to be January 5, 1998 to June 30, 1998,

the first six calendar days out of parameter estimation period. Table 7 provides

the pricing performances of stochastic volatility option pricing models and Black-

Scholes model.

The main results are similar to the case of in-sample period with some minor

differences entailed. Firstly, incorporating two stochastic volatility structures

into option pricing models also largely improves the pricing performance of the

original Black and Scholes model. For 2568 total samples, MAEs of two stochastic

volatility model are 98.346 and 87.047 while Black and Scholes model with 40

and 20 trade day historical volatility are 115.181 and 110.096, respectively. The

values of RMSE and RMSER show the similar results. These results also hold

irrespective of moneyness and time to maturity.

Secondly, the option pricing model under square-root volatility also shows the
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best performance.

Thirdly, the Black and Scholes model based on 40 trade days historical volatil-

ity shows the worst performance. This is the opposite result of in-sample period.

Finally, as it might be expected, the size of pricing errors of out-of-sample

period are greater than those of in-sample period.

5.4 The Effect of Risk Premium on Pricing Performance

As seen before, the estimates of market price of volatility risk have significant neg-

ative values. We consider the effect of risk premium on the pricing performances.

For this purpose, we calculate the pricing errors by setting the risk premium to

be zero, λ = 0. Table 8 provides the pricing performances of two option pricing

models under stochastic volatility, over in-sample and out-of-sample period.

For in-sample period, the pricing errors of two option models under stochastic

volatility have dropped in a small magnitude. For total sample over in-sample

period, MAEs of log-volatility and square-root volatility model with negative

risk premiums are 82.774 and 67.351, while those with zero risk premium become

81.454 and 64.866, respectively. It seems that the reduction in pricing errors

under the constraint λ = 0 is hard to be reconciled with investors behavior.

In contrast, the pricing errors of two stochastic volatility models have in-

creased over out-of-sample period. In particular, the deterioration of pricing

performance of square-root volatility model is noticeable. For total sample over

out-of-sample period, MAEs of log-volatility and square-root volatility model

with negative risk premiums are 98.346 and 87.047, while those with zero risk

premium become 101.713 and 95.898, respectively.

To sum up, the non-zero market price of volatility risk is an important factor

from the viewpoint of investors in the sense that incorporating risk premium

contributes to performance improvement at least, over out-of-sample period.
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Table 6: Option Pricing Performance: In-Sample Period

MAE, RMSE and RMSER are mean absolute error, root mean squared error and root mean squared error relative to option price, which are

defined by (17), (18) and (19), respectively. Total is entire option samples over in-sample period i.e., from July 1, 1997 through December 30,

1997. Short (respectively, Medium) is option sample with time to maturity smaller than 60 calendar days (respectively, over 60 calendar days to

four months). ALL is entire sample under Total, Short, and Medium. ATM is at-the-money sample which satisfies 0.97 ≤ S/K ≤ 1.03. OTM is
out-of-the-money sample which satisfies S/K < 0.97. ITM is in-the-money sample which satisfies 1.03 < S/K . Sample is the number of observed

call option prices. BS40 (respectively, BS20)is the original Black-Scholes option pricing model based on 40 (respectively, 20) trade day historical

volatility. log-volatility (respectively, square-root volatility) is the option pricing model under log-volatility (respectively, square-root volatility).

Sample BS40 BS20 Log-Volatility Square-Root Volatility

Mat. Mon. Obs. MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER

ALL 2558 105.292 153.341 0.645 123.105 193.306 1.007 82.774 126.746 0.482 67.351 102.501 0.383

ATM 794 112.626 155.654 0.263 130.363 194.367 0.316 86.181 124.947 0.227 68.625 98.096 0.189

Total OTM 1181 88.093 137.516 0.920 108.650 186.310 1.455 63.892 104.043 0.679 46.837 71.035 0.536

ITM 583 130.146 178.507 0.137 142.504 205.392 0.155 116.384 165.213 0.128 107.170 150.901 0.117

ALL 1743 91.250 135.213 0.727 100.931 155.472 1.163 71.962 113.014 0.544 61.504 99.756 0.433

ATM 499 101.258 138.390 0.285 106.717 152.686 0.326 74.254 103.972 0.244 59.896 88.628 0.210

Short OTM 781 64.183 101.850 1.057 78.432 133.934 1.714 46.466 76.461 0.782 35.231 55.239 0.618

ITM 463 126.121 175.177 0.138 132.646 188.709 0.148 112.497 163.000 0.129 107.554 154.433 0.120

ALL 815 135.324 186.282 0.419 170.529 256.101 0.536 105.899 152.007 0.311 79.855 108.136 0.244

ATM 295 131.857 181.150 0.222 170.361 249.495 0.297 106.357 154.060 0.193 83.390 112.308 0.145

Med. OTM 400 134.776 188.626 0.562 167.651 259.733 0.714 97.915 143.338 0.407 69.499 94.554 0.321

ITM 120 145.676 190.811 0.134 180.538 259.909 0.178 131.385 173.487 0.125 105.687 136.416 0.100
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Table 7: Option Pricing Performance: Out-of-Sample Period

MAE, RMSE and RMSER are mean absolute error, root mean squared error and root mean squared error relative to option price, which are

defined by (17), (18) and (19), respectively. Total is entire option samples over out-of-sample period i.e., from January 5, 1998 through June 30,

1998. Short (respectively, Medium) is option sample with time to maturity smaller than 60 calendar days (respectively, over 60 calendar days to

four months). ALL is entire sample under Total, Short, and Medium. ATM is at-the-money sample which satisfies 0.97 ≤ S/K ≤ 1.03. OTM is
out-of-the-money sample which satisfies S/K < 0.97. ITM is in-the-money sample which satisfies 1.03 < S/K . Sample is the number of observed

call option prices. BS40 (respectively, BS20)is the original Black-Scholes option pricing model based on 40 (respectively, 20) trade day historical

volatility. log-volatility (respectively, square-root volatility) is the option pricing model under log-volatility (respectively, square-root volatility).

Sample BS40 BS20 Log-Volatility Square-Root Volatility

Mat. Mon. Obs. MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER

ALL 2568 115.181 169.427 0.612 110.096 156.145 0.456 98.346 143.639 0.438 87.047 132.814 0.336

ATM 754 127.063 175.052 0.302 125.469 163.388 0.266 108.985 145.242 0.233 95.275 130.716 0.202

Total OTM 1048 84.521 134.976 0.913 79.863 114.429 0.665 68.701 101.104 0.645 54.025 86.500 0.484

ITM 766 145.431 202.845 0.153 136.327 193.768 0.142 128.431 185.522 0.138 124.129 179.111 0.131

ALL 1731 102.380 153.966 0.715 91.483 135.221 0.513 83.690 130.467 0.498 74.332 121.146 0.381

ATM 477 108.896 146.645 0.326 98.211 123.582 0.277 84.481 112.776 0.237 72.332 98.200 0.207

Short OTM 675 73.414 116.688 1.103 60.925 88.535 0.776 51.738 79.800 0.761 39.574 62.998 0.573

ITM 579 130.782 193.082 0.147 121.566 181.506 0.135 120.288 181.624 0.136 116.499 176.936 0.130

ALL 837 141.653 197.601 0.301 148.588 192.326 0.305 128.655 167.626 0.275 113.343 154.168 0.213

ATM 277 158.348 215.359 0.253 172.410 215.329 0.248 151.180 188.469 0.225 134.782 172.930 0.194

Med. OTM 373 104.623 162.933 0.377 114.133 150.344 0.386 99.399 131.135 0.348 80.171 117.645 0.254

ITM 187 190.787 230.468 0.170 182.028 227.583 0.162 153.643 197.104 0.144 147.753 185.685 0.133
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Table 8: Option Pricing Performance When λ = 0

MAE, RMSE and RMSER are mean absolute error, root mean squared error and root mean squared error relative to option price, which are

defined by (17), (18) and (19), respectively. Total is entire option samples over out-of-sample period i.e., from January 5, 1998 through June 30,

1998. Short (respectively, Medium) is option sample with time to maturity smaller than 60 calendar days (respectively, over 60 calendar days to

four months). ALL is entire sample under Total, Short, and Medium. ATM is at-the-money sample which satisfies 0.97 ≤ S/K ≤ 1.03. OTM is
out-of-the-money sample which satisfies S/K < 0.97. ITM is in-the-money sample which satisfies 1.03 < S/K . Sample is the number of observed

call option prices. Log-Vol (In) (respectively, Sq-Vol (In)) is option pricing model under Log-Volatility (respectively, Square-Root volatility) model

over in-sample period, July 1, 1997 to December 30, 1997. Similarly, Log-Vol (Out) (respectively, Sq-Vol (Out)) is option pricing model under

Log-Volatility (respectively, Square-Root volatility) model over out-of-sample period, January 5, 1998 to June 30, 1998.

Sample Log-Vol (In) Sq-Vol (In) Log-Vol (Out) Sq-Vol (Out)

Mat. Mon. MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER MAE RMSE RMSER

ALL 81.454 122.630 0.461 64.866 100.132 0.332 101.713 146.856 0.436 95.898 141.936 0.337

ATM 87.349 122.173 0.224 70.916 99.703 0.188 114.535 150.996 0.238 109.053 146.605 0.217

Total OTM 60.407 96.894 0.647 39.161 61.782 0.457 71.792 104.867 0.642 62.317 96.997 0.480

ITM 116.060 163.203 0.127 108.696 150.739 0.116 130.027 186.584 0.139 128.894 183.058 0.133

ALL 71.670 111.634 0.523 60.663 99.218 0.380 84.308 130.572 0.491 76.485 122.803 0.371

ATM 75.333 103.575 0.244 62.242 91.001 0.211 85.830 113.941 0.238 76.386 103.268 0.213

Short OTM 45.032 73.114 0.749 31.039 49.848 0.535 52.010 79.020 0.751 40.438 62.540 0.554

ITM 112.768 162.282 0.129 108.932 154.735 0.120 120.710 181.649 0.136 118.592 178.157 0.131

ALL 102.315 143.344 0.290 73.854 102.061 0.192 137.708 175.811 0.290 136.046 174.990 0.251

ATM 107.676 148.419 0.187 85.589 112.906 0.139 163.965 199.263 0.237 165.306 200.350 0.225

Med. OTM 90.427 131.461 0.376 55.019 80.113 0.241 107.595 139.995 0.370 101.911 139.127 0.306

ITM 128.761 166.709 0.121 107.788 134.211 0.099 158.877 201.099 0.146 160.792 197.463 0.139

21



6 Concluding Remarks

Using the Nikkei 225 index return and its options data, we have investigated

the pricing performances of two common option pricing models under stochastic

volatility. The empirical results have witnessed that incorporating stochastic

volatility structure into option pricing model enhances pricing performances in

Japanese security market. In particular, accommodating square-root volatility

process into option pricing model sharply contributes to pricing error reduction.

As mentioned before, the estimates of unobservable volatility are clearly im-

portant for pricing performances. In this sense, comparing our results with the

implied parameters approach based on cross sectional analysis using only options

data should shed light on our outcomes. These considerations should be included

in further research.

7 Appendices

7.1 Some Inputs in Option Pricing Formula under Log-

Volatility

Let Ei(·) denote the exponential integral function defined by

Ei(z) = −
∫ ∞

−z

exp(−x)

x
dx.

In addition, we set γ ≡ θ − log σ0. Then, Σa, a11, and a22 are given as follows.

(1) Σ

Σ =
exp(2θ)

κ
[Ei(z1)− Ei(z2)],

where z1 = −2γ and z2 = −2γ exp(−κT ).

(2) a11

a11 =
ρ

2κ2γ

{
σ3

0 − exp(2θ(1− exp(−κT )))
[
σ

2 exp(−κT )
0 (σ0 − γ exp(θ)Ei(z3)
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+γ exp(θ)Ei(z4)) + 3γ exp(θ(1 + 2 exp(−κT )))Ei(z5)
]
+ 3γ exp(3θ)Ei(z6)

}
,

where z3 = −γ exp(−κT ), z4 = −γ, z5 = −3 γ exp(−κT ), and z6 = −3 γ.
(3) a12

a12 =
−λ

2κ2γ

{
σ2

0 + 2 exp(2θ) γ Ei(z1)

− exp(2θ)[exp(−2 exp(−κT ) θ) σ
2 exp(−κT )
0 + 2 γEi(z2)]

}
,

We calculate the exponential integrals by utilizing the following relation:

Ei(z) = c+ log |z|+
∞∑

n=1

zn

n · n! ,

where c is Euler’s constant.

7.2 Option Pricing Formula under Square-Root Volatility

Given (7) and (11), Heston (1993) derived the European call option value as

follows.7

C(St, σt, τ) = exp(−d τ)St P1 − exp(−r τ)K P2.

In the above formula, Pj for j = 1, 2 are given as follows.

Pj(x, v, τ ; log[K]) =
1

2
+

1

π

∫ ∞

0
Re

[
exp(−iψ log[K])fj(x, v, τ ;ψ)

iψ

]
dψ,

where

fj(x, v, τ ;ψ) = exp(C(τ ;ψ) +D(τ ;ψ) v + iψ x,

C(τ ;ψ) = r ψiτ +
κ θ

δ2

{
(bj − ρ δ ψi+ h)τ − 2 log

[
1− g exp(h τ)

1− g

]}

D(τ ;ψ) =
bj − ρδψi+ h

δ2

(
1− exp(h τ)

1− g exp(h τ)

)
,

g =
bj − ρδψi+ h

bj − ρδψi− h
,

h =
√
(ρδψi− bj)2 − δ2(2ujψi− ψ2),

u1 =
1
2
, u2 = −1

2
, b1 = κ+ λ− ρ δ, b2 = κ+ λ, v = σ2

t , and x = log[exp(−d τ)St].
7Heston (1993) assumed no dividend flow.
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Figure 1: Nikkei 225 Index and its Return Process over Estimation Period

(upper) Daily Nikkei 225 stock index running from January 4, 1991 to December 30, 1997

(1727 trade days). (middle) return process starting from January 7, 1991 (1726 series). (lower)

autocorrelation-adjusted return process starting from January 10, 1991 (1723 series).
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Figure 2: Log-Volatility From January 10, 1991 through June 30, 1998

Filtered log-volatility of Nikkei 225 stock index return runs from January 10, 1991 through June 30, 1998.
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Figure 3: Square-Root Volatility from January 10, 1991 through June 30, 1998

Filtered square-root volatility of Nikkei 225 stock index return runs from January 10, 1991 through June 30, 1998.
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Figure 4: Filtered Volatility and Historical Volatility over In-Sample Period (July 1, 1997 through December 30, 1997)

Filtered volatility are those of log-volatility and square-root volatility model. Historical volatility 40 (respectively, 20) represents historical volatility

of 40 (respectively, 20) trade days.
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Figure 5: Filtered Volatility and Historical Volatility over Out-of-Sample Period (January 5, 1998 through June 30, 1998)

Filtered volatility are those of log-volatility and square-root volatility model. Historical volatility 40 (respectively, 20) represents historical volatility

of 40 (respectively, 20) trade days.
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