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Abstract

This paper deals with the distribution of multivariate scale mix-
ture variate defined by X = SZ, where Z = (Z1, · · · , Zp)

′, Z1, . . . ,
Zp are i.i.d. random variables, and S is a positive definite random
matrix independent of Z. First we obtain asymptotic expansions
of the distribution function and the density function of X when
S = diag(S1, . . . , Sp). Uniform error bounds are given for ap-
proximations of the distribution function of X. L1-norm error
bounds are given for approximations for the density function of
X. Then it is shown how our results can be extended for the gen-
eral case when the scale matrix may be not necessary diagonal.
The L1-norm error bounds are applied in obtaining error bounds
for asymptotic expansions of Lawley-Hotelling’s T 2

0 statistic.
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1. Introduction

Let Z = (Z1, · · · , Zp)
′ be a random vector, where Z1, . . . , Zp are i.i.d.

random variables, and G and g be the distribution function and the density
functions of Z1, respectively. Further, let S be a positive definite random
matrix independent of Z. Then we consider the distribution of

X = SZ, (1.1)

which is called a multivariate scale mixture of Z. Here it is tacitly assumed
that the scale factor S is close to I in some sense. In practical applications we
consider two cases when Z1 has the standard normal distribution or a gamma
distribution. Asymptotic expansions and their error bounds in the univariate
case have been extensively studied. For a summary, see, e.g., Fujikoshi and
Shimizu (1990), Fujikoshi (1993), Shimizu and Fujikoshi (1997), Ulyanov,
Fujikoshi and Shimizu (1999). Having in mind statistical applications of our
results we consider a transformation given by

S = Y δρ or Y = Sδ/ρ, (1.2)

where δ = ±1 and 1/ρ is a positive integer. For multivariate scale mixtures,
some special cases have been studied. For the distribution function, Fujikoshi
and Shimizu (1989a) treated the case S = sIp. Fujikoshi and Shimizu (1989b)
treated the case S − I ≥ 0, G = Φ, δ = 1 and α = 1/2, where Φ is the
distribution function of N(0, 1). For the density function, Shimizu (1995)
obtained L1-error bound when G = Φ, δ = 1 and α = 1/2.

First we consider the case when S = diag(S1, . . . , Sp). Then the transfor-
mation (1.2) is expressed as

Yj = S
δ/ρ
j , j = 1, . . . , p, (1.3)

where Y = diag(Y1, . . . , Yp). Uniform error bounds are given for approxima-
tions of the distribution function of X. L1-norm error bounds are given for
approximations for the density function of X. From the latter results we can
obtain asymptotic expansions for P(X ∈ A) and their error bounds for any
Borel set A. It is shown how our results can be extended for the general case
when the scale matrix may be not necessary diagonal. The L1-norm error
bounds are applied in obtaining error bounds for asymptotic expansions of
Lawley- Hotelling’s T 2 statistic.
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2. Uniform Error Bounds

Let G and g be the distribution function and the density function of Z1,
respectively. Let D = {x ∈ R : g(x) > 0}. Assume that

A1. G is k times continuously differentiable on D.

The distribution function of X = SZ given S = s = yδρ is given by G(xy−δρ).
For j = 1, . . . , k and for x ∈ D, let cδ,j(x) be defined by

∂j

∂yj
G(xy−δρ) = y−jcδ,j(xy

−δρ)g(xy−δρ), (2.1)

and cδ,j(x) = 0 for x /∈ D and write

αδ,j ≡



1, if j = 0,

(1/j!) supx |cδ,j(x)|g(x), if j ≥ 1.

Note that if p = 1 we can take

αδ,0 = min{G(0), 1−G(0)}.
However, αδ,0 = 1 for all p ≥ 2. The functions cδ,j(x) may be defined also by

∂j

∂yj
G(xy−δρ)

∣∣∣∣∣
y=1

= cδ,j(x)g(x).

For explicit expressions of cδ,j(x) in normal or Gamma distributions, see,
e.g. Fujikoshi and Shimizu (1990), Fujikoshi (1993), etc. The distribution
function of X = (X1, . . . , Xp) in (1.1) with S = diag(S1, . . . , Sp) can be
written as

Fp(x) = P(X1 ≤ x1, . . . , Xp ≤ xp)

= E[G(x1Y
−δρ
1 ) . . .G(xpY

−δρ
p )],

where x = (x1, . . . , xp). Let Gp(x) = G(x1) . . .G(xp). We consider an ap-
proximation for Fp(x),

Gδ,k,p(x) = E


Gp(x) +

k−1∑
j=1

1

j!

(
(Y1 − 1)

∂

∂y1
+ . . .+ (Yp − 1)

∂

∂yp

)j
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× G(x1y
−δρ
1 ) . . . G(xpy

−δρ
p )

∣∣∣∣∣
y1=...=yp=1




= Gp(x) +
k−1∑
j=1

∑
(j)

1

j1! . . . jp!
cδ,j1(x1) . . . cδ,jp(xp)gp(x) (2.2)

×E
[
(Y1 − 1)j1 . . . (Yp − 1)jp

]
,

where gp(x) = g(x1) . . . g(xp) and the sum
∑

(j) is taken over all non-negative
integers such that j1 + . . .+ jp = j.

Let

Wδ,j,p =
∑
[j]

(p− 1)!

i1! . . . im!
αδ,j1 . . . αδ,jp, (2.3)

where summation is taken over all non-negative integers 0 ≤ j1 ≤ . . . ≤ jp
such that j1+. . .+jp = j, and the constantsm, i1, . . . , im are positive integers
such that

0 ≤ j1 = . . . = ji1 < ji1+1 = . . . = ji1+i2

< . . . < ji1+...+im−1+1 = . . . = ji1+...+im(= jp) ≤ j.

In particular, we have

Wδ,1,p = αδ,1,

Wδ,2,p = αδ,2 +
1

2
(p− 1)α2

δ,1,

Wδ,3,p = αδ,3 + (p− 1)αδ,1αδ,2 +
1

6
(p− 1)(p− 2)α3

δ,1, (2.4)

Wδ,4,p = αδ,4 +
1

2
α2

δ,2 + (p− 1)αδ,1αδ,3

+
1

2
(p− 1)(p− 2)α2

δ,1αδ,2 +
1

24
(p− 1)(p− 2)(p− 3)α4

δ,1.

Theorem 2.1. Let X = SZ be a multivariate scale mixture in (1.1) with
S = diag(S1, . . . , Sp). Suppose that the distribution G of Z1 satisfies A1 and
E(Y k

i ) <∞, i = 1, . . . , p for a given integer k. Then we have

|Fp(x)−Gδ,k,p(x)| ≤ βδ,k,p

p∑
i=1

E[|Yi − 1|k], (2.5)
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where βδ,1,p = 1 +Wδ,1,p and for k ≥ 2

βδ,k,p =


W

1/k
δ,k,p +


1 + p

k−1∑
j=1

Wδ,j,p




1/k



k

. (2.6)

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied.
Then we have

|Fp(x)−Gδ,k,p(x)| ≤ γδ,k,p

p∑
i=1

E[|Yi − 1|k], (2.7)

where γδ,k,p is defined by formula for k ≥ 2

γδ,k,p = p−1


βδ,k + (p− 1)

k−1∑
q=0

γδ,k−q,p−1αδ,q


 (2.8)

with γδ,1,p = βδ,1, γδ,k,0 = 0 and γδ,k,1 = βδ,k for all k ≥ 1; here

βδ,k =
(
α

1/k
δ,k + (αδ,0 + . . .+ αδ,k−1)

1/k
)k
.

In particular, we have for all p ≥ 1

γδ,1,p = βδ,1,

γδ,2,p = βδ,2 +
1

2
(p− 1)αδ,1βδ,1.

It is important to note that in the case δ = 1, ρ = 1/2, and Z1 ∼ N(0, 1)
we have the following remarkable property:

∂j

∂yj
Φ(xy−1/2)

∣∣∣∣∣
y=1

= −2−jH2j−1(x)ϕ(x), (2.9)

where Hn(x) is Chebyshev-Hermite polynomial of degree n defined by the
equality

Hn(x) = (−1)n{φ(x)}−1 d
n

dxn
φ(x). (2.10)
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It follows from (2.9) and (2.10) that

∂j

∂yj
Φ(xy−1/2)

∣∣∣∣∣
y=1

= 2−j d
2j

dx2j
Φ(x).

Therefore from (2.2) we can write Gδ,k,p in the form

G1,k,p(x) = E


Φp(x) +

k−1∑
j=1

1

2jj!
(∂′x(S − I)∂x)

j
Φp(x)


 , (2.11)

where Φp(x) = Φ(x1) . . .Φ(xp) and ∂x is the differential operator

∂x = (∂/∂x1, . . . , ∂/∂xp)
′.

The approximation (2.11) was considered by Fujikoshi and Shimizu (1989b)
in a special case when

S − I ≥ 0, δ = 1, ρ =
1

2
, G = Φ

and without assumption that S is a diagonal matrix.

3. L1-Norm Error Bounds

In this section we give main results on asymptotic expansions of the
density function of X and their error bounds. First we consider the univariate
case, i.e.,

X = SZ. (3.1)

Let f(x) and g(z) be the probability density functions of X and Z, respec-
tively. Assume that

A2. g is k times continuously differentiable on D.

Considering the transformation Y = Sδ/ρ, we have

f(x) = E[Y −δρg(xY −δρ)]. (3.2)

We define a function bδ,j(x) for j ≥ 1 and for x ∈ D, by formula

∂j

∂yj

(
y−δρg(xy−δρ)

)
= y−jy−δρbδ,j(xy

−δρ)g(xy−δρ) (3.3)
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and cδ,j(x) = 0 for x /∈ D. For j = 0 by bδ,0(x) = 1. The equality (3.3) can
be easily checked by mathematical induction. Defferentiating both sides of
(2.1) with respect to x, it is easy to see that

d

dx
(cδ,j(x)g(x)) = bδ,j(x)g(x). (3.4)

We define also for j ≥ 0

ξδ,j =
1

j!
‖bδ,j(x)g(x)‖1 , (3.5)

where for any integrable function h(x),

‖h(x)‖1 =
∫ ∞

−∞
|h(x)|dx,

and

ηδ,k =


ξ

1/k
δ,k +


2 +

k−1∑
j=1

ξδ,j




1/k



k

.

Consider an approximation gδ,k(x, y) for y−δρg(xy−δρ) defined as follows:
for y > 0 and x ∈ R1,

gδ,k(x, y) = g(x) +
k−1∑
j=1

1

j!
bδ,j(x)g(x)(y − 1)j,

where gδ,1(x, y) = g(x). This suggests an approximation gδ,k(x) for f(x):

gδ,k(x) = E[gδ,k(x, Y )]. (3.6)

Note that
d

dx
Gδ,k(x) = gδ,k(x),

which is easily seen from (3.4).

Theorem 3.1. Le X be a scale mixture of Z defined by (3.1). Suppose
that the density function g of Z1 satisfies A2 and E(Y k

i ) < ∞, i = 1, . . . , p
for a given integer k. Then we have for any k ≥ 1 and any Borel set A ⊂ R1

|P(X ∈ A)−
∫

A
gδ,k(x)dx| ≤ 1

2
ηδ,kE[|Y − 1|k]. (3.7)
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Next we consider a p variate case. Let fp(x) and gp(z) be the density
functions of X and Z. Then gp(z) = g(z1) . . . g(zp), and the conditional
density of X given Yi = yi, i = 1, . . . , p is given by

y−δρ
1 g(xy−δρ

1 ) . . . y−δρ
p g(xy−δρ

p ).

We define an approximation for fp(x) as

gδ,k,p(x) = E


gp(x) +

k−1∑
j=1

1

j!

(
(Y1 − 1)

∂

∂y1
+ . . .+ (Yp − 1)

∂

∂yp

)j

× y−δρ
1 g(x1y

−δρ
1 ) . . . y−δρ

p g(xpy
−δρ
p )

∣∣∣∣∣
y1=...=yp=1




= gp(x) +
k−1∑
j=1

∑
(j)

1

j1! . . . jp!
bδ,j1(x1) . . . bδ,jp(xp)gp(x) (3.8)

×E
[
(Y1 − 1)j1 . . . (Yp − 1)jp

]
,

which is an extension of gδ,k(x). Note that from (3.4) we have

gδ,k,p(x) =
∂p

∂x1 . . . ∂xp
Gδ,k,p(x).

Put ηδ,1,p = 2 + Vδ,1,p and for k ≥ 2

ηδ,k,p =


V

1/k
δ,k,p +


2 + p

k−1∑
j=1

Vδ,j,p




1/k



k

, (3.9)

where

Vδ,j,p =
∑
[j]

(p− 1)!

i1! . . . im!
ξδ,j1 . . . ξδ,jp, (3.10)

and the summation is taken in the sense of (2.3). Note that Vδ,j,p is expressed
in the same form as the expression (2.4) for Wδ,j,p.

Theorem 3.2. Let X = SZ be a multivariate scale mixture in (1.1) with
S = diag(S1, . . . , Sp). Suppose that the density function g of Z1 satisfies A2
and E(Y k

i ) < ∞, i = 1, . . . , p for a given integer k. Then we have for any
Borel set A ⊂ Rp

|P(X ∈ A)−
∫

A
gδ,k,p(x)dx| ≤ 1

2
ηδ,k,p

p∑
i=1

E[|Yi − 1|k]. (3.11)
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Theorem 3.3. Under the same condition as in Theorem 3.2 we have for
any Borel set A ⊂ Rp

|P(X ∈ A)−
∫

A
gδ,k,p(x)dx| ≤ 1

2
νδ,k,p

p∑
i=1

E[|Yi − 1|k], (3.12)

where νδ,k,p are determined recursively by the relation for k ≥ 2

νδ,k,p = p−1


ηδ,k + (p− 1)

k−1∑
q=0

νδ,k−q,p−1ξδ,q


 (3.13)

with νδ,1,p = ηδ,1, νδ,k,0 = 0 and νδ,k,1 = ηδ,k for all k ≥ 1.

Remark 3.1. In the case δ = 1, ρ = 1/2 and Z1 ∼ N(0, 1) a similar
result has been obtained in Theorem 2 in Shimizu (1995) with the same
recurrence relation as (3.13) but with another value for νδ,k,1.

For the case δ = 1, ρ = 1/2, and Z1 ∼ N(0, 1), we have

∂j

∂yj

(
y−1/2ϕ(xy−1/2)

) ∣∣∣∣∣
y=1

= 2−jH2j(x)ϕ(x). (3.14)

It follows from (2.9) and (3.14) that

∂j

∂yj

(
y−1/2ϕ(xy−1/2)

) ∣∣∣∣∣
y=1

= 2−j d
2j

dx2j
ϕ(x).

Therefore the approximations g1,k,1 (see (3.8)) in this case can be written in
the form (cf (2.10))

g1,k,1(x) = E


ϕ(x) + k−1∑

j=1

1

2jj!
(Y1 − 1)j

d2j

dx2j
ϕ(x)


 . (3.15)

In the multivariate case p > 1 and Y = diag(Y1, . . . , Yp) the function g1,k,p

from (3.8) can be written in the form

g1,k,p(x) = E


ϕp(x) +

k−1∑
j=1

1

2jj!
(∂′x(Y − I)∂x)

j
ϕp(x)


 , (3.16)
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where ϕp(x) = ϕ(x1) . . . ϕ(xp). As it was shown in Shimizu (1995) (see the
proof of Theorem 2, p.135) the expression of g1,k,p in the form (3.16) enables
us to extend Theorem 3.3 to the general case when the scale matrix may be
not necessary diagonal.

In fact, assume that X = SZ, Z is distributed as the standard nomal
distribution Np(0, Ip), and S is symmetric positive definite matrix and is not
diagonal. Fix any Borel set A ⊂ Rp. We have

P(X ∈ A) = ES[P(X ∈ A|S)], (3.17)

where ES denotes expectation with respect to S. It means we can construct
at first approximation for P(X ∈ A) for any given value of S and then taking
expectation with respect to S we get result for P(X ∈ A). In the following
arguments S is non-random symmetric positive definite matrix. Under this
assumption on S there exists orthogonal matrix T such that S = TLT ′,
where L = diag(L1, . . . , Lp) and Li = Y

1/2
i for i = 1, . . . , p. We have

P(SZ ∈ A) = P(LT ′Z ∈ T ′A) = P(LZ ∈ T ′A), (3.18)

as T ′Z has also the standard normal distribution in Rp.
Note that ∫

T ′A
ϕp(x)dx =

∫
A
ϕp(x)dx, (3.19)

as the standard normal distribution is invariant with respect to orthogonal
transformations. Moreover, if we put v = Tx, then T∂x = ∂v and therefore
we have that ∂′x(Y − I)∂x = ∂′vT (Y − I)T ′∂v = ∂′v(S2 − I)∂v. Thus, we
get for any j = 1, 2, . . . , k − 1∫

T ′A
(∂′x(Y − I)∂x)

j
ϕp(x)dx =

∫
A

(
∂′v(S2 − I)∂v

)j
ϕp(v)dv. (3.20)

Combining (3.16)∼ (3.20) we can rewrite (3.12) in the form

∣∣∣∣∣P(X ∈ A) −
∫

A
E


ϕp(x) +

k−1∑
j=1

1

2jj!

(
∂′x(S2 − I)∂x

)j
ϕp(x)


 dx

∣∣∣∣∣
≤ 1

2
νδ,k,pE[tr(S2 − I)k], (3.21)

provided (S2 − I)k is positive definite matrix, as in this case

tr(S2 − I)k =
p∑

k=1

(Yi − 1)k.
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The similar extension is possible for Theorem 3.2 as well.
It is necessary to note that for δ = −1 or +1 and for any positive ρ we

have
∂

∂y

(
y−δρϕ(xy−δρ)

) ∣∣∣∣∣
y=1

= δρH2(x)ϕ(x). (3.22)

Therefore the previous arguments imply the parts (i) and (ii) in the following.

Theorem 3.4. Let k = 1, 2 or 3 and X = SZ be a multivariate scale
mixture with Z ∼ Np(0, Ip) and S is such that (Sδ/ρ − I) is positive definite
matrix and E[tr(Sδ/ρ − I)k] < ∞. Then for any Borel set A ⊂ Rp we have
(i) for k = 1:

∣∣∣∣∣P(X ∈ A)−
∫

A
ϕp(x)dx

∣∣∣∣∣ ≤ 1

2
min{ηδ,1,p, νδ,1,p}E[tr(Sδ/ρ − I)],

(ii) for k = 2:

∣∣∣∣∣P(X ∈ A)−
∫

A
E
[
ϕp(x) + (δρ)

(
∂′x(Sδ/ρ − I)∂x

)
ϕp(x)

]
dx

∣∣∣∣∣
≤ 1

2
min{ηδ,2,p, νδ,2,p}E[tr(Sδ/ρ − I)2],

(iii) for k = 3:

∣∣∣∣∣P(X ∈ A)−
∫

A
E


ϕp(x) +

2∑
j=1

(δρ)j

j!

(
∂′x(Sδ/ρ − I)∂x

)j
ϕp(x)

+ (ρ2 − 1

2
δρ)

(
∂′x(Sδ/ρ − I)2∂x

)
ϕp(x)

]
dx

∣∣∣∣∣
≤ 1

2
min{ηδ,3,p, νδ,3,p}E[tr(Sδ/ρ − I)3].

The part (ii) in Theorem 3.4 holds without assumption that (Sδ/ρ − I) is
positive definite matrix. Moreover if (Sδ/ρ − I) is not positive definite, the
in Theorm 3.4 (i), (iii) we can use inequalities

E[tr(Sδ/ρ − I)] ≤ p1/2
(
E[tr(Sδ/ρ − I)2]

)1/2
,
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and

E[tr(Sδ/ρ − I)3] ≤
(
E[tr(Sδ/ρ − I)4]

)3/4
,

provided that E[tr(Sδ/ρ − I)2] < ∞ and E[tr(Sδ/ρ − I)4] < ∞, respectively.
The inequlities follows from Holder’sinequality. In order to derive the result
(iii), it is enough to show that

∫
T ′A

( p∑
i=1

(Yi − 1)
∂

∂zi

)2

hϕ(x, z)

∣∣∣∣∣
z1=...=zp=1

dx

=
∫

T ′A

[
ρ2 (∂′x(Y − I)∂x)

2
(3.23)

+ (2ρ2 − δρ)
(
∂′x(Y − I)2∂x

)]
ϕp(x)dx,

where hϕ(x, z) =
∏p

i=1 z
−δρ
i ϕ(xiz

−δρ
i ). We have

∂2

∂z2

(
z−δρg(xz−δρ)

) ∣∣∣∣∣
z=1

=
[
ρ2x4 − (4ρ2 + δρ)x2 + ρ2 + δρ

]
ϕ(x). (3.24)

Put

M =

( p∑
i=1

(Yi − 1)
∂

∂zi

)2

hϕ(x, z)

∣∣∣∣∣
z1=...=zp=1

.

It follows from (3.22) and (3.24) that

M =

[ p∑
i=1

(yi − 1)2{ρ2x4
i − (4ρ2 + δρ)x2

i + ρ2 + δρ}

+ 2
∑

1≤i<j≤p

(yi − 1)(yj − 1)ρ2H2(xi)H2(xj)


ϕp(x). (3.25)

Since H4(x) = x4 − 6x2 + 3, we get from (3.25) that

M − ρ2 (∂′x(Y − I)∂x)
2
ϕp(x)

=
p∑

i=1

(yi − 1)2
[
(2ρ2 − δρ)x2

i + δρ− 2ρ2
]
ϕp(x)

=
p∑

i=1

(yi − 1)2(2ρ2 − δρ)(x2
i − 1)ϕp(x)

= (2ρ2 − δρ)
(
∂′x(Y − I)2∂x

)
ϕp(x).

Hence (3.23) is proved.
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4. Asymptotic Expansions When A Is Sym-

metric

In this section we show how asymptotic expansions for P(X ∈ A) given
in Theorems 3.1∼ 3.3 can be written in the case when A is a symmetric set,
that is, A ⊂ Rp stays the same for any permutation of cordintes x1. . . . , xp.
Put

P̂δ,k,p(A) =
∫

A
gδ,k(x)dx =

k−1∑
j=0

1

j!
Mj(A), (4.1)

where M0(A) =
∫
A gp(x)dx and for j ≥ 1

Mj(A) =
∑
(j)

j!

j1! . . . jp!

∫
A
bδ,j1(x1) . . . bδ,jp(xp)gp(x)dx

×E
[
(Y1 − 1)j1 . . . (Yp − 1)jp

]
. (4.2)

Assume that A is symmetric with respect to x1, . . . , xp and let

Iδ,i =
∫

A
bδ,i(x1)gp(x)dx,

Iδ,ij =
∫

A
bδ,i(x1)bδ,j(x2)gp(x)dx, (4.3)

Iδ,ijk =
∫

A
bδ,i(x1)bδ,j(x2)bδ,j(x3)gp(x)dx, so on.

Then we have

M1(A) = Iδ,1E[
p∑

i=1

(Yi − 1)],

M2(A) = Iδ,2E[
p∑

i=1

(Yi − 1)2] + Iδ,11E[
p∑

i�=j

(Yi − 1)(Yj − 1)], (4.4)

M3(A) = Iδ,3E[
p∑

i=1

(Yi − 1)3] + 3Iδ,21E[
p∑

i�=j

(Yi − 1)2(Yj − 1)]

+ Iδ,111E[
p∑

i�=j �=k

(Yi − 1)(Yj − 1)(Yk − 1)].

Assume that Y1 ≥ . . . ≥ Yp are the characteristic roots of a random matrix
W . Let V =W − I. Then it is easily seen that

p∑
i=1

(Yi − 1)j = trV j, j = 1, 2, . . . ,

13



p∑
i�=j

(Yi − 1)(Yj − 1) = (trV )2 − trV 2,

p∑
i�=j

(Yi − 1)2(Yj − 1) = trV trV 2 − trV 3, (4.5)

p∑
i�=j �=k

(Yi − 1)(Yj − 1)(Yk − 1) = (trV )3 + 3trV trV 2 − 4trV 3.

Note that the quantity
∑p

i=1 |Yi − 1|k appeared in our error bounds can
be written as

p∑
i=1

|Yi − 1|k =
p∑

i=1

(Yi − 1)k

= trV k, (4.6)

if k is even. If k is odd and E(Y k+1
i ) < ∞ for all i = 1, 2, . . . , p, then using

Holder’s inequality we get

p∑
i=1

|Yi − 1|k ≤ p1/(k+1)

( p∑
i=1

(Yi − 1)k+1

)k/(k+1)

= p1/(k+1)
(
trV (k+1)

)k/(k+1)
. (4.7)

5. Hotelling’s T 2
0 -Statistic

In this section we consider error bounds for asymptotic approximatins of
Lawley-Hotelling’s T 2

0 -statistic

T 2
0 = ntrShS

−1
e , (5.1)

where Sh and Se are independently distributed as Wishart distributions
Wp(q, Ip) and Wp(n, Ip), respectively. The statistic is used as one of the
test statistics in multivariate linear model. The limiting of T 2

0 is a chi-square
distribution with r = pq degrees of freedom. Further, it is known (see, e.g.,
Anderson (1984)) that T 2

0 has an asymptotic expansion

P (T 2
0 ≤ x) = Gr(x) +

r

4n
{(q − p− 1)Gr(x)

− 2qGr+2(x) + (q + p+ 1)Gr+4(x)} + O(n−2),

14



where Gr is the distribution function of the chi-squared variate with r degrees
of freedom.

Lemma 5.1. We can write T 2
0 in terms of a multivariate scale mixture

X = (X1, . . . , Xp)
′ = diag(S1, . . . , Sp)Z as

T 2
0 = X1 + . . .+Xp, (5.2)

where Z = (Z1, . . . , Zp), Z1, . . . , Zp are i.i.d. random variables, Z1 ∼ χ2
q, and

letting Si = Y
−1
i (i = 1, . . . , p), Y1 > . . . > Yp > 0 are the characteristic roots

of W such that nW ∼Wp(n, Ip).

Proof. It is well known that the distribution T 2
0 can be expressed as

T 2
0 = ntr(U ′U)S−1

e

= ntr(H ′U ′UH)(H ′SeH)−1,

where U is a q×p random matrix whose elements are independent idntically
distributed as N(0, 1), and H is an orthogonal matrix. Note that the dis-
tributions of UH and H ′SeH are the same as U and Se, respectively. The
result is obtained by choosing H such that H ′SeH = diag(Y1, . . . , Yp).

Lemma 5.2. Let U = (U11, . . . , U1q, . . . , Up1, . . . , Upq) be an r = pq
dimensional random vector such that

U = (diag(S1, . . . , Sp)⊗ Ip)Z,

where Z = (Z11, . . . , Z1q, . . . , Zp1, . . . , Zpq), Z
′
ijs are i.i.d. random variables,

Z11 ∼ N(0, 1), and letting Si = Y
−1/2
i (i = 1, . . . , p), Y1 > . . . > Yp > 0 are

the characteristic roots of W such that nW ∼ Wp(n, Ip). Then we can also
write T 2

0 as
T 2

0 = U ′U . (5.3)

Proof. This is a direct consequence of Lemma 5.1.

Now we show what kind of approximations and error bounds we can give
for the distribution function of T 2

0 using Theorems 3.2 and 3.3. First we use
the representation (5.2). In this case we apply Theorems 3.2 and 3.3 with
δ = −1 and ρ = 1.

15



Let gq(x) be a density function of χ2
q , i.e.

gq(x) =
1

2q/2Γ(q/2)
xq/2−1 exp(−x/2).

Then the functions b−1,j(x) defined by (3.3) are given by

b−1,1(x) = −1

2
(x− q),

b−1,2(x) =
1

4
{x2 − 2qx+ q(q − 2)},

b−1,3(x) = −1

8
{x3 − 3qx2 + 3q(q − 2)x− (q − 2)2(q − 4)}, (5.4)

b−1,4(x) =
1

16
{x4 − 4qx3 + 6q(q − 2)x2 − 4q(q − 2)(q − 4)x

+q(q − 2)(q − 4)(q − 6)}.
It is easy to compute that

b−1,1(x)gq(x) =
1

2
q {gq(x)− gq+2(x)} ,

b−1,2(x)gq(x) =
1

4
q {(q − 2)gq(x)− 2qgq+2(x) + (q + 2)gq+4(x)} ,

b−1,3(x)gq(x) =
1

8
q {(q − 2)(q − 4)gq(x)− 3q(q − 2)gq+2(x)

+ 3q(q + 2)gq+4(x)− (q + 2)(q + 4)gq+6(x)} ,
b−1,4(x)gq(x) =

1

16
q {(q − 2)(q − 4)(q − 6)gq(x)

− 4q(q − 2)(q − 4)gq+2(x) + 6q(q + 2)(q + 4)gq+4(x)

− 8q(q + 2)(q + 4)gq+6(x)

+ (q + 2)(q + 4)(q + 6)gq+8(x)} .
Since

P(T 2
0 ≤ x) = P(X ∈ A) (5.5)

with A = {(x1, . . . , xp) ∈ Rp : x1 + . . . + xp ≤ x}, the set A is symmetric
with respect to x1, . . . , xp. Therefore, applying the results in Section 4, we
get

P̂−1,4,p(A) =
3∑

j=0

1

j!
Mj(A), (5.6)

where
M0(A) = P(Z ∈ A) = P(χ2

r ≤ x) = Gr(x)
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with r = pq, and in the expressions for Mi(A), i = 1, 2, 3 in (4.4) we have to
take

I−1,1 =
1

2
q [Gr(x)−Gr+2(x)] ,

I−1, 2 =
1

4
q {(q − 2)Gr(x)− 2qGr+2(x) + (q + 2)Gr+4(x)} ,

I−1,11 =
1

4
q2 {Gr(x)− 2Gr+2(x) +Gr+4(x)} ,

I−1,3 =
1

8
q {(q − 2)(q − 4)Gr(x)− 3q(q − 2)Gr+2(x)

+3q(q + 2)Gr+4(x)− (q + 2)(q + 4)Gr+6(x)} ,
I−1,21 =

1

8
q2 {(q − 2)Gr(x)− 3(q − 2)Gr+2(x)

+3(q + 2)Gr+4(x)− (q + 2)Gr+6(x)} ,
I−1,111 =

1

8
q3 {Gr(x)− 3Gr+2(x) + 3Gr+4(x)−Gr+6(x)} .

Let V = W − I, where the characteristic roots of W are Y1, . . . , Yp. Then we
can use the following results:

E[trV ] = 0, E[trV 2] =
1

n
p(p+ 1),

E[(trV )2] =
1

n
2p, E[trV 3] =

1

n2
p(p2 + 3p+ 4),

E[trV trV 2] =
4

n2
p(p+ 1), E[(trV )3] =

8

n2
p.

Using the above results we obtain

P̂−1,2,p(A) = Gr(x),

P̂−1,2,p(A) = Gr(x) +
r

4n
{(q − p− 1)Gr(x)

− 2qGr+2(x) + (q + p+ 1)Gr+4(x)}
+

r

96n2
{()Gr(x) + ()Gr+2(x)

+ ()Gr+4(x) + ()Gr+6(x)}.

It follows from Theorems 3.2 and 3.3 that their error bounds are given as
follows:

|P(T 2
0 ≤ x)− P̂−1,2,p(A)|

17



≤ 1

2n
p(p+ 1)min{η−1,2,p, ν−1,2,p}, (5.7)

|P(T 2
0 ≤ x)− P̂−1,4,p(A)|

≤ 1

2n2
p(2p2 + 5p+ 5)min{η−1,4,p, ν−1,4,p}. (5.8)

Next we consider asymptotic expansions and their error bounds based on
the expression (5.3), i.e.

P(T 2
0 ≤ x) = P(U ∈ Ã), (5.9)

where
Ã = {(u11, . . . , u1q, . . . , up1, . . . , upq) ∈ Rr :

∑
i,j

u2
ij ≤ x}.

In this case we use Theorems 3.2 and 3.3 with δ = −1 and ρ = 1/2. How-
ever, it is necessary to make a slight modification, since the number of in-
dependent elements in the scale matrix is not r, but p. In fact, the term∏p

i=1 y
−δρ
i g(xiy

−δρ
i ) in the Mj of (4.1) or (5.5) should be changed to

p∏
i=1

q∏
j=1

y
1/2
i ϕ(uijy

1/2
i ) =

p∏
i=1

y
q/2
i (2π)−q/2 exp(−1

2
yiu

2
i ), (5.10)

where u2
i =

∑q
j=1 u

2
ij. Let b̃−1,j be the function corresponding to the function

bδ,j in (4.2). Then, the function b̃−1,j is defined by

dj

dyj

(
yq/2(2π)−q/2 exp(−1

2
yu2)

)

= y−j b̃−1,j(u
2y1/2)yq/2(2π)−q/2 exp(−1

2
yu2).

We denote the corresponding approximation by

P̃−1,4,p(Ã) =
3∑

j=0

1

j!
M̃j(Ã). (5.11)

It is easily seen that b−1,j = b̃−1,j . This result implies that the two approxi-

mations P̂−1,4,p(A) and P̃−1,4,p(Ã) are the same. Further, the corresponding
error bounds are also the same, since

E[|b−1,j(X)|] = E[|̃b−1,j(U
2)|],

where X is distributed as χq, U2 = U2
1 + . . . + U2

p and U1, . . . , Up are inde-
pendent identically distributed as N(0, 1).
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6. Lemmas

First we consider a basic result in the univariate case, i.e., X = SZ =
Y δρZ.

Lemma 6.1. We have for any k ≥ 1

|G(x)−Gδ,k(x)| ≤ βδ,kE
[
|Y − 1|k

]
, (6.1)

‖f(x)− gδ,k(x)‖1 ≤ ηδ,kE
[
|Y − 1|k

]
, (6.2)

where βδ,k = βδ,k,1.

Proof. For a proof of (6.1), see Shimizu and Fujikoshi (1997). In the
following we prove (6.2). Here and in following we use an expansion formula
for a function h with k ≥ 1 continuous derivatives

h(y) = h(1) +
k−1∑
j=1

1

j!
h(j)(1)(y − 1)j

+
(y − 1)k

(k − 1)!
E
[
(1− τ)k−1h(k)(1 + τ(y − 1))

]
, (6.3)

where τ is an uniformly distributed [0, 1] random variable.
For any y > 0 let

∆δ,k(x, y) ≡ y−δρg(xy−δρ)− gδ,k(x, y). (6.4)

Using (3.3), (6.3) and (6.4) we can write also for k ≥ 1

∆δ,k(x, y) =
(y − 1)k

(k − 1)!
E
[
(1− τ)k−1 (1 + τ(y − 1))−k−δρ

×bδ,k
(
x(1 + τ(y − 1))−δρ

)
g
(
x(1 + τ(y − 1))−δρ

)]
. (6.5)

The idea of our proof is to use (6.4) or (6.5) depending on whether y is far
from 1 or close to it. Let

ϕ = (ξδ,k/ηδ,k)
1/k.

Note that ϕ : 0 < ϕ < 1. If y : 0 < y < ϕ, then it follows from (6.3) that

‖∆δ,k(x, y)‖1 ≤

1 +

k−1∑
j=0

ξδ,j


 (1− y)k

(1− ϕ)k
= ηδ,k|y − 1|k. (6.6)
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If y ≥ ϕ, then for any τ ∈ [0, 1] we have 1 + τ(y − 1) ≥ ϕ. Therefore it
follows from (6.5) and Fubini theorem that

‖∆δ,k(x, y)‖1 ≤ ξδ,k
|y − 1|k
ϕk

= ηδ,k|y − 1|k. (6.7)

Combining (6.4), (6.6) and (6.7) we get (6.2).

Lemma 6.2. Let 0 ≤ j1 ≤ j2 ≤ · · · ≤ jp be integers such that
j1 + · · ·+ jp = j and a1, · · · , ap be non-negative real numbers. Then∑

ai1
1 · · ·aip

p ≤ (p− 1)!(aj
1 + · · ·+ aj

p), (6.8)

where summation on the left-hand side is taken over all p! permutations
(i1, · · · , ip) of (j1, · · · , jp).

Remark 6.1. Note when a1 = · · · = ap = 1 inequality (6.8) is written in
the form p! ≤ p!. Therefore, (6.8) is sharp.

Proof. We prove (6.8) by mathematical induction on p. If p = 1, then
(6.8) is obvious. We assume that (6.8) is valid for p − 1 ≥ 1. We write the
left-hand side of (6.8) in the form

∑
ai1

1 . . . a
ip
p = aj1

1 Pj−j1(a2, · · · , ap) + . . .+ a
jp

1 Pj−jp(a2, . . . , ap),

where Pj−j1(a2, . . . , ap) =
∑
ai2

2 . . . a
ip
p and the summation here is taken over

all (p−1)! permutations (i2, · · · , ip) of (j2, . . . , jp). Polynomials Pj−j2, . . . , Pj−jp

are defined similarly. The hypothesis of the induction asserts that for all
: = 1, 2, . . . , p we have

Pj−j�
(a2, . . . , ap) ≤ (p− 2)!(aj−j�

2 + . . .+ aj−j�
p ).

Therefore we get∑
ai1

1 . . . a
ip
p ≤ (p− 2)!

[
aj1

1

(
aj−j1

2 + . . .+ aj−j1
p

)
+ · · ·

+ a
jp

1

(
a

j−jp

2 + . . .+ aj−jp
p

)]
. (6.9)

It is clear that on the right-hand side of (6.9) we can replace a1 by any other
ai, that is, for i = 1, 2, · · · , p we have

∑
ai1

1 · · ·aip
p ≤ (p− 2)!


aj1

i

p∑
n=1,n�=i

aj−j1
n + · · ·+ ajp

i

p∑
n=1,n�=i

aj−jp
n


 . (6.10)
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Note that for any positive b1 and b2 a function bj−x
1 bx2 + bx1b

j−x
2 of x is convex

on [0, j] and is equal to bj1 + b
j
2 for x = 0 and x = j (cf. Lemma 2 in Shimizu

(1995)). Therefore for all integers i = 0, 1, · · · , j we have

bj−i
1 bi2 + bi1b

j−i
2 ≤ bj1 + bj2. (6.11)

Thus summing up inequalities (6.10) for i = 1, 2, · · · , p we get from (6.11)
that

p
∑
ai1

1 · · ·aip
p ≤ (p− 2)!(p− 1)p(ak

1 + · · ·+ ak
p). (6.12)

Hence we obtain (6.8).

Lemma 6.3. Assume that G(x) satisfies A1. Let j(0 < j ≤ k) be a
positive integer and

M(x) =
∑
(j)

j!
p∏

i=1

aji
i

1

ji!
y−ji

iji
cδ,ji

(xiy
−δρ
iji

)g(xiy
−δρ
iji

),

where a1, · · · , ap are positive numbers and
∑

(j) means summation over all
non-negative integers j1, . . . , jp such that j1+ . . .+jp = j. If all yiji

≥ ϕ > 0,
i = 1, 2, . . . , p, then

|M(x)| ≤ (aj
1 + . . .+ aj

p)ϕ
−jWδ,j,p (6.13)

Wδ,j,p is defined by (2.3).

Proof. Since all yiji
≥ ϕ, i = 1, 2, . . . , p, and for any permutation of

(j1, . . . , jp) a product αδ,j1 . . . αδ,jp does not change, we get

|M(x)| ≤ ϕ−j
∑
[j]

(
αj1 . . . αjp

∑
1

a�1
1 . . . a

�p
p

)
, (6.14)

where
∑

[j] denotes summation over all non-negative integers 0 ≤ j1 ≤ . . . ≤
jp such that j1 + . . . + jp = j, and

∑
1 means summation over all different

permutations {:1, :2, · · · , :p} of a fixed set {j1, j2, · · · , jp}. Since
∑

1 consists
of p!/(i1! . . . im!) summands, where i1, . . . , im are such that m and i1, . . . , im
are positive integers satisfing

0 ≤ j1 = . . . = ji1 < ji1+1 = . . . = ji1+i2

< . . . < ji1+...+im−1+1 = . . . = ji1+...+im(= jp) ≤ j.
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we get (6.13) from (6.14) and Lemma 6.2.

Lemma 6.4. Let

H(x,y) =
p∏

i=1

G(xiy
−δρ
i ).

Assume that G(x) satisfies A1. Then for any positive a1, . . . , ap and a positive
integer j : 0 < j ≤ k we have

∣∣∣∣∣∣
(
a1
∂

∂y1
+ . . .+ ap

∂

∂yp

)j

H(x,y)

∣∣∣∣∣
yi=yi0,i=1,2,...,p

∣∣∣∣∣∣
≤ (aj

1 + . . .+ aj
p)
j!

ϕj
Wδ,j,p, (6.15)

provided yi0 ≥ ϕ > 0, i = 1, 2, . . . , p, where Wδ,j,p is defined by (2.3).

Proof. It follows immediately from Lemma 6.3 and the fact that the
left-hand side equals

∑
(j)

j!
p∏

i=1

aji
i

1

ji!
y−ji

i0 cδ,ji
(xiy

−δρ
i0 )g(xiy

−δρ
i0 ).

For any integrable function F (x) : Rp → R1, we define

‖F (x)‖p =
∫
Rp

|F (x)|dx.

Lemma 6.5. Assume that g(x) satisfies A2. Let j(0 < j ≤ k) be a
positive integer and

I(x) =
∑
(j)

j!
p∏

i=1

aji
i

1

ji!
y−ji

iji
bδ,ji

(xiy
−δρ
iji

)g(xiy
−δρ
iji

),

where a1, · · · , ap are positive numbers. If all yiji
≥ ϕ > 0, i = 1, 2, . . . , p,

then
‖I(x)‖p ≤ (aj

1 + . . .+ aj
p)ϕ

−jVδ,j,p (6.16)

Vδ,j,p is defined by (3.10).
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Proof. The arguments are the same as in Lemma 6.3. Since all yiji
≥ ϕ

and for any permutation of (j1, . . . , jp) a product ξδ,j1 . . . ξδ,jp does not change,
we get

‖I(x)‖p ≤ ϕ−j
∑
[j]

(
ξj1 . . . ξjp

∑
1

a�1
1 . . . a

�p
p

)
, (6.17)

Thus, Lemma 6.5 and (6.16) impl (6.15).

Lemma 6.6. Let

h(x,y) =
p∏

i=1

y−δρ
i g(xiy

−δρ
i ).

Assume that g(x) satisfies A2. Then for any positive a1, . . . , ap and a positive
integer j : 0 < j ≤ k we have∥∥∥∥∥∥

(
a1
∂

∂y1
+ . . .+ ap

∂

∂yp

)j

H(x,y)

∣∣∣∣∣
yi=yi0,i=1,2,...,p

∥∥∥∥∥∥
≤ (aj

1 + . . .+ aj
p)
j!

ϕj
Vδ,j,p, (6.18)

provided yi0 ≥ ϕ > 0, i = 1, 2, . . . , p, where Vδ,j,p is defined by (3.10).

Proof. It follows immediately from Lemma 6.5 and the fact that the
left-hand side equals

∑
(j)

j!
p∏

i=1

aji
i

1

ji!
y−ji

i0 bδ,ji
(xiy

−δρ
i0 )g(xiy

−δρ
i0 ).

7. Proof of Theorems

Proof of Theorems 2.1. Note that

Fp(x) = E [H(x,Y )] ,

where Y = (Y1, . . . , Yp) and a function H is defined in (6.13). We use a
Taylor formula for a function H with k ≥ 1 continuous derivatives

H(y) = H(1) +
k−1∑
j=1

1

j!
H(j)(1)(y − 1)j +

1

k!
H(k)(1 + τ(y − 1))(y − 1)k, (7.1)
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where τ is a number on (0, 1). We construct an expansion for H using (7.1)
sequentially. Namely, at first we apply (7.1) to G(x1y

−δρ
1 ). We get

H(x,y) =


G(x1) +

k−1∑
j=1

1

j!
cδ,j(x1)g(x1)(y1 − 1)j +R1(y1 − 1)k




× H2(x,y), (7.2)

where

R1 =
1

k!

∂

∂yk

(
G(x1y

−δρ)
) ∣∣∣∣∣

y=1+τ(y1−1)

and

H2(x,y) =
p∏

i=2

G(xiy
−δρ
i ).

Now we apply (7.1) for a function G(x2y
−δρ
2 ) so that for a summand

1

j!
cδ,j(x1)g(x1)(y1 − 1)jH2(x,y),

we apply (7.1) with k replaced by k − j. At last we obtain the following
expansion

h(x,y) = g(x1) . . . g(xp) +
k−1∑
j=1

∑
(j)

p∏
i=1

1

ji!
cδ,ji

(xi)g(xi)(y1 − 1)j +Rδ,k,p, (7.3)

where Rδ,k,p is a sum of terms each of which can be written in the form

(y1 − 1)k1 · · · (yp − 1)kpMk1(y1) . . .Mkp(yp) (7.4)

with ki ≥ 0 for i = 1, 2, · · · , p and k1 + . . .+ kp = k. Each factor Mj in (7.4)
has one of the following form:

Mk(y) =
1

k!

∂k

∂yk
1

(
G(xy−δρ

1 )
) ∣∣∣∣∣

y1=1+τ(y−1)

, (7.5)

M0(y) = G(x) or M0(y) = G(xy−δρ) and when j : 1 ≤ j ≤ k− 1, we have for
Mj(y) one of the two representations:

1

j!
cδ,j(x)g(x) or

1

j!

∂j

∂yj
1

(
G(xy−δρ

1 )
) ∣∣∣∣∣

y1=1+τ(y−1)

. (7.6)
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Let

ϕ1 = (Wδ,k,p/ηδ,k,p)
1/k . (7.7)

At first we consider the case when 0 < min(y1, . . . , yp) ≤ ϕ1. Assume that
y1 is such that 0 < y1 ≤ ϕ1. We have for any j : 1 ≤ j ≤ k,

|1− y1|j + . . .+ |1− yp|j

≤ 1

(1− ϕ1)k−j

(
|1− y1|k

+|1− y1|k−j|1− y2|j + . . .+ |1− y1|k−j|1− yp|j
)

(7.8)

≤ p

(1− ϕ1)k−j

(
|1− y1|k + . . .+ |1− yp|k

)

Therefore, using Lemma 6.3, (7.3) and (7.7) we get

|Rδ,k,p| ≤ 2 +
k−1∑
j=1

(
|1− y1|j + . . .+ |1− yp|j

)
Wδ,j,p

≤ 1

(1− ϕ1)k

(
|1− y1|k + . . .+ |1− yp|k

)
(7.9)

×

2 +

k−1∑
j=1

Wδ,j,p




= ηδ,k,p

[
|1− y1|k + . . .+ |1− yp|k

]
.

If min(y1, · · · , yp) > ϕ1 then using Lemma 6.4, (7.4) and representations for
summands contained in Rδ,k,p we get

|Rδ,k,p| ≤ Wδ,k,p

ϕk
1

[
|1− y1|k + · · ·+ |1− yp|k

]

= ηδ,k,p

[
|1− y1|k + . . .+ |1− yp|k

]
. (7.10)

According to remark in the beginning of the proof and combining (7.8) and
(7.9) we finish the proof of Theorem 2.1.

Proof of Theorems 2.2. The result can be proved by using arguments
similar to the proof of Lemma 2 in Shimizu (1995). In order to prove (2.6)
it is enough as usual to show that∣∣∣∣∣

p∏
i=1

G(xiy
−δρ
i )−Gδ,k,p(x)

∣∣∣∣∣ ≤ γδ,k,p

p∑
i=1

|yi − 1|k, (7.11)
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where Gδ,k,p is defined by (2.2) but yi, i = 1, . . . , p, are considered as positive
real numbers.

We prove (7.10) by mathematical induction with respect to p. In the
case p = 1 the inequlity (7.10) was proved in Theorem 2.1 of Shimizu and
Fujikoshi (1997). Therefore, we can write for p ≥ 2

p∏
i=1

G(xiy
−δρ
i ) =


G(xp) +

k−1∑
j=1

1

j!
(yj − 1)jcδ,j(x)g(x) +Rδ,p




×
p−1∏
i=1

G(xiy
−δρ
i ), (7.12)

where |Rδ,p| ≤ βδ,k|yp − 1|k. Assume that (7.10) holds for p − 1. Then we

apply (7.10) to
∏p−1

i=1 G(xiy
−δρ
i ) with p replaced by p − 1 and k replaced by

k − j when
∏p−1

i=1 G(xiy
−δρ
i ) is a factor by (yp − 1)j in (7.11). Thus, we get

∣∣∣∣∣
p∏

i=1

G(xiy
−δρ
i )−Gδ,k,p(x)

∣∣∣∣∣ ≤ βδ,k|yp − 1|k

+
k−1∑
q=0

αδ,q|yp − 1|qγδ,k−q,p−1

p∑
i=1

|yi − 1|k−q. (7.13)

We got (7.13) from (7.12) applying induction hypothesis to
∏p−1

i=1 G(xiy
−δρ
i ).

It is clear we could use the same arguments to the function
∏p

i=1,i�=j G(xiy
−δρ
i )

with any j = 1, 2, . . . , p. Then we could get (7.13) with |yp − 1| with |yp − 1|
replaced by |yj − 1|. Since in all these inequalities the left-hand sides will
coincide, summing up the inequalities for j = 1, 2, . . . , p and applying (6.12)
(cf. the proof of Lemma 2 in Shimizu (1995)) we come to (2.7) and recurrence
formula for γδ,k,p stated in Theorem 2.2.

Proof of Theorem 3.1. This is a direct consequence of the inequality
(6.3) in Lemma 6.1.

Proof of Theorem 3.2. The proof is similar to the one of Theorem 2.2.
Note that

fp(x) = E [h(x,Y )] ,

where Y = (Y1, . . . , Yp) and a function h is defined in (6.16). We construct
an expansion for h using (6.3) sequentially. Namely, at first we apply (6.3)
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to y−δρ
1 g(x1y

−δρ
1 ). We get

h(x,y) =


g(x1) +

k−1∑
j=1

1

j!
bδ,j(x1)g(x1)(y1 − 1)j +R1(y1 − 1)k




×h2(x,y), (7.14)

where

R1 =
1

(k − 1)!
E


(1− τ)k−1 ∂

∂yk

(
y−δρg(x1y

−δρ)
) ∣∣∣∣∣

y=1+τ(y1−1)




and

h2(x,y) =
p∏

i=2

y−δρ
i g(xiy

−δρ
i ).

Now we apply (6.3) for a function y−δρ
2 g(x2y

−δρ
2 ) so that for a summand

1

j!
bδ,j(x1)g(x1)(y1 − 1)jh2(x,y),

we apply (6.3) with k replaced by k − j. At last we obtain the following
expansion

h(x,y) = g(x1) . . . g(xp)

+
k−1∑
j=1

∑
(j)

p∏
i=1

1

ji!
bδ,ji

(xi)g(xi)(y1 − 1)j +Rδ,k,p, (7.15)

where Rδ,k,p is a sum of terms each of which can be written in the form

(y1 − 1)k1 · · · (yp − 1)kpIk1(y1) · · · Ikp(yp) (7.16)

with ki ≥ 0 for i = 1, 2, · · · , p and k1 + · · ·+ kp = k. Each factor Ij in (7.15)
has one of the following form:

Ik(y) =
1

(k − 1)!

∫ 1

0
(1− τ)k−1 ∂

k

∂yk
1

(
y−δρ

1 g(xy−δρ
1 )

) ∣∣∣∣∣
y1=1+τ(y−1)

dτ, (7.17)

I0(y) = g(x) or I0(y) = y−δρg(xy−δρ) and when j : 1 ≤ j ≤ k − 1, we have
for Ij(y) one of the two representations:

1

j!
bδ,j(x)g(x) or

1

(j − 1)!

∫ 1

0
(1− τ)j−1 ∂

j

∂yj
1

(
y−δρ

1 g(xy−δρ
1 )

) ∣∣∣∣∣
y1=1+τ(y−1)

dτ.
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Let

ϕ1 = (Vδ,k,p/ηδ,k,p)
1/k . (7.18)

At first we consider the case when 0 < min(y1, . . . , yp) ≤ ϕ1. Assume that
y1 is such that 0 < y1 ≤ ϕ1. Then, the same arguments as in (7.7) and (7.8)
imply that for any j : 1 ≤ j ≤ k,

|1− y1|j + . . .+ |1− yp|j ≤ p

(1− ϕ1)k−j

(
|1− y1|k + . . .+ |1− yp|k

)
, (7.19)

and
‖Rδ,k,p‖p ≤ ηδ,k,p

[
|1− y1|k + . . .+ |1− yp|k

]
. (7.20)

Similarly, if min(y1, · · · , yp) > ϕ1, then we have

‖Rδ,k,p‖p ≤ ηδ,k,p

[
|1− y1|k + . . .+ |1− yp|k

]
. (7.21)

These results imply the consequence of Theorem 3.2.

Proof of Theorems 3.3. It is enough to repeat arguments of Lemma 2
and Theorem 2 in Shimizu (1995) replacing Lemma 1 in Shimizu (1995) by
our Lemma 6.1.
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