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Abstract

This paper deals with the distribution of multivariate scale mix-
ture variate defined by X = SZ, where Z = (Z3,---,2,), Z1, .. .,
Zy are t.1.d. random variables, and S is a positive definite random
matrix independent of Z. First we obtain asymptotic expansions
of the distribution function and the density function of X when
S = diag(Sy,...,S,). Uniform error bounds are given for ap-
proximations of the distribution function of X. Li-norm error
bounds are given for approximations for the density function of
X. Then it is shown how our results can be extended for the gen-
eral case when the scale matrix may be not necessary diagonal.
The Lqi-norm error bounds are applied in obtaining error bounds
for asymptotic expansions of Lawley-Hotelling’s T7? statistic.
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1. Introduction

Let Z = (Zy,---,Z,)" be a random vector, where Z1,...,Z, are i.i.d.
random variables, and G and g be the distribution function and the density
functions of Z;, respectively. Further, let S be a positive definite random
matrix independent of Z. Then we consider the distribution of

X =52, (1.1)

which is called a multivariate scale mixture of Z. Here it is tacitly assumed
that the scale factor S is close to I in some sense. In practical applications we
consider two cases when Z; has the standard normal distribution or a gamma
distribution. Asymptotic expansions and their error bounds in the univariate
case have been extensively studied. For a summary, see, e.g., Fujikoshi and
Shimizu (1990), Fujikoshi (1993), Shimizu and Fujikoshi (1997), Ulyanov,
Fujikoshi and Shimizu (1999). Having in mind statistical applications of our
results we consider a transformation given by

S=Y% or Y=g (1.2)

where § = +1 and 1/p is a positive integer. For multivariate scale mixtures,
some special cases have been studied. For the distribution function, Fujikoshi
and Shimizu (1989a) treated the case S = sI,. Fujikoshi and Shimizu (1989b)
treated the case S — 1 > 0,G = &, = 1 and a = 1/2, where ® is the
distribution function of N(0,1). For the density function, Shimizu (1995)
obtained Li-error bound when G = ®,0 =1 and a = 1/2.

First we consider the case when S = diag(Si,...,S,). Then the transfor-
mation (1.2) is expressed as

Y, =80 j=1,...,p, (1.3)

where Y = diag(Y3, ...,Y,). Uniform error bounds are given for approxima-
tions of the distribution function of X. L;-norm error bounds are given for
approximations for the density function of X. From the latter results we can
obtain asymptotic expansions for P(X € A) and their error bounds for any
Borel set A. It is shown how our results can be extended for the general case
when the scale matrix may be not necessary diagonal. The L;-norm error
bounds are applied in obtaining error bounds for asymptotic expansions of
Lawley- Hotelling’s T statistic.



2. Uniform Error Bounds

Let G and g be the distribution function and the density function of 7,
respectively. Let D = {z € R : g(z) > 0}. Assume that

Al. G is k times continuously differentiable on D.

The distribution function of X = SZ given S = s = 3% is given by G (zy~°).
For j=1,...,k and for x € D, let ¢;;(x) be defined by

& B y B B
a—ij(wy %) =y Ies (wy ) glzy ), (2.1)

and ¢ () = 0 for ¢ D and write

1, if j =0,
Od&j =

(1/Y) sup, [cs,5(x)g(x), if j > 1.
Note that if p = 1 we can take

aso = min{G(0),1 — G(0)}.
However, a0 = 1 for all p > 2. The functions ¢; j(x) may be defined also by

J
é)—-G(ﬂcy“s")

i = c5,(2)g ().

y=1

For explicit expressions of ¢;;(x) in normal or Gamma distributions, see,
e.g. Fujikoshi and Shimizu (1990), Fujikoshi (1993), etc. The distribution
function of X = (Xi,...,X,) in (1.1) with S = diag(Si,...,S,) can be
written as

F(x) = P(Xi<uz,...,X,<x,)
= E[G(21Y7%) ... Gla,Y, %),

where © = (x1,...,2,). Let Gy(x) = G(x1)...G(z,). We consider an ap-
proximation for F,(x),

k—1 P 9 j
Csip(®) = B |Gyl@)+ 3~ ((y1 ) (T 1)@>
J=1 D




X G(xlyfap) . G(xpyp_ép)

yl---ypj

= Gy@) + Y s () s (@)gp(@) (22)
i (LR
xE[(Yi— 1) (Y, = 1),

where g,(x) = g(1) ... g(x,) and the sum 3 ;) is taken over all non-negative
integers such that j; +...+ 7, = J.

Let ( i
p—1)!
Wé)j’p - Z 7/ | 7/ ‘a57]1 R aéujp’ (2‘3>
where summation is taken over all non-negative integers 0 < j; < ... < j,
such that j;+...+7j, = j, and the constants m, ¢, . .., %,, are positive integers
such that
0<ji=...=Jiy <Ja+1 = = Jir+is
<o < Jigdebimei bl = = jz‘1+...+im(: jp) < J

In particular, we have
Wsip = a5,

1
W6,2,p = 052 + 5(}7 - 1)@?11,

1
Wssp = asz+ (p—1)asioss + 6(]9 —1)(p - 2)0‘317 (2.4)
1
Wsap = asat 504(2;,2 +(p— Dasias3
1 1
+§(p —1)(p — 2)aj as2 + ﬂ(p —1)(p—2)(p — 3)a;;.

Theorem 2.1. Let X = SZ be a multivariate scale mizture in (1.1) with
S = diag(Sy,...,S,). Suppose that the distribution G of Zy satisfies Al and
E(YF) < 00,i=1,...,p for a given integer k. Then we have

1Ey(@) — Gaspla@)| < Brnn S E[Y: — 14, (2.5)

i=1



where 351, =1+ W51, and for k> 2

k—1

1/k) *
Bsgop = { Wik, + (1 > W&j,,,) . (2.6)

J=1

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied.
Then we have

p
|Fyp() — Gspp(®)| < vp > BIY: — 1], (2.7)
i=1
where V5. 15 defined by formula for k > 2
k—1
Yo, kp = pil ﬁ&k + (p - 1) Z Y6, k—qp—1065 g (28>
q=0

with Ys,1p = ﬁa,la Vs.0 =0 and Vok1 = ﬁa,k for all k> 1; here

k
ﬁg}k = (Oé;/kk + (04570 + ...+ Oé&k_l)l/k) .

In particular, we have for all p > 1

Ys1p = 55,17

1
Ysop = Bs2+ 5(17 — 1151

It is important to note that in the case § = 1,p=1/2, and Z; ~ N(0, 1)
we have the following remarkable property:

o’ _ s
50 2@y YH = =27 Hya(w)p(x), (2.9)
y it

where H,(x) is Chebyshev-Hermite polynomial of degree n defined by the
equality

o) = (-1 {0(x)} o o(a) (2.10)



It follows from (2.9) and (2.10) that

2 ~1/2
@@(W )

2j
_; d

ppy O(x).

=2
y=1

Therefore from (2.2) we can write Gy, in the form

Gl’kjp(.’ll‘) =E

CEDY 77 Oe(S = Doxy @), 11

where ©,(x) = ®(z1) ... P(x,) and Og is the differential operator
833 = (8/83171, ce ,8/8xp)’.

The approximation (2.11) was considered by Fujikoshi and Shimizu (1989b)
in a special case when

1
L, G=0

and without assumption that S is a diagonal matrix.

3. Li-Norm Error Bounds

In this section we give main results on asymptotic expansions of the
density function of X and their error bounds. First we consider the univariate
case, i.e.,

X =52 (3.1)

Let f(x) and g(z) be the probability density functions of X and Z, respec-
tively. Assume that

A2. ¢ is k times continuously differentiable on D.
Considering the transformation Y = S%7_ we have
flw) = E[Y % g(zY )], (3-2)
We define a function b ;(z) for j > 1 and for x € D, by formula

oI

@ (y_5pg(xy_5p)) _ y—jy—épb&j(Iy—dp)g(xy—ép) (3.3)
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and ¢5;(z) = 0 for x ¢ D. For j =0 by bso(z) = 1. The equality (3.3) can
be easily checked by mathematical induction. Defferentiating both sides of
(2.1) with respect to x, it is easy to see that

L (e, (2)(r)) = b (2)g). (3.4)

We define also for 7 > 0
1
$o = 77 Ibss(@)g (@)l (3.5)
where for any integrable function h(z),

Ih@)l = [ In()d,

1 1/k) k
Mok = { ;ék + (2 +> fa,j) } -
j=1

Consider an approximation gs(,y) for y=°?g(xy=°?) defined as follows:
for y > 0 and z € R!,

and

g3(2.9) = g(a) + 3 <bs, @)ooy 1

where g51(z,y) = g(x). This suggests an approximation gsx(x) for f(z):

gsk(x) = Elgs x(z,Y)]. (3.6)
Note that p
@Gak(ﬂﬂ) = gs.u(),

which is easily seen from (3.4).

Theorem 3.1. Le X be a scale mizture of Z defined by (3.1). Suppose
that the density function g of Z, satisfies A2 and E(Y}) < c0,i =1,...,p
for a given integer k. Then we have for any k > 1 and any Borel set A C R!

POX € A) [ guula)da] < oeB[Y 11 (37)
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Next we consider a p variate case. Let f,(x) and g¢,(z) be the density

functions of X and Z. Then g,(z) = ¢(#1)...9(2y), and the conditional
density of X given Y; = y;,i=1,...,p is given by

—6 -5 - _
yr g (wy ) -y g (%),
We define an approximation for f,(x) as

k-1

we+ S (o0l o0 )

j=1 ayl
yl---yp1]

- Z(Z b)) (38)
)

g5,k,p(m) = E

<y (e ™) -y, P gy, )

[m — 1) (Y, - 1),
which is an extension of gsx(x). Note that from (3.4) we have
oP G
Jsp(T) = m 5,kep(T)-
Put 751, =2+ Vs1, and for k > 2
e 1 1/k) k
Nskp = Vékp 2+p Z Viip ) (3.9)
j=1
where (v 1)
‘/61j1p - Z 7/ ‘ Z 56.71 R £57j1)7 (3'10>
(7] .

and the summation is taken in the sense of (2.3). Note that Vj;, is expressed
in the same form as the expression (2.4) for W .

Theorem 3.2. Let X = SZ be a multivariate scale mizture in (1.1) with
S = diag(S1,...,Sp). Suppose that the density function g of Zy satisfies A2

and E(YF) < co,i = 1,...,p for a given integer k. Then we have for any
Borel set A C RP

1 p
P(X € 4) = [ gnp(@del < Snsuy BNV - 1. (3.11)
=1

8



Theorem 3.3. Under the same condition as in Theorem 3.2 we have for
any Borel set A C R?

1 p
P(X € 4) = [ gonpl(@)da] < Svary > EIY: =117, (3.12)
=1

where vs ., are determined recursively by the relation for k > 2

k—1
Vskp = pil (7]5,/6 + (p - ]-) Z V5,k—q,p—1£5,q> (313>
q=0

with Vs1p = N51,Vsko = 0 and vsp1 = nsx for all k> 1.

Remark 3.1. In the case 6 = 1, p = 1/2 and Z; ~ N(0,1) a similar
result has been obtained in Theorem 2 in Shimizu (1995) with the same
recurrence relation as (3.13) but with another value for vsy ;.

For the case § = 1,p=1/2, and Z; ~ N(0, 1), we have

oI

L2 (12 -
o (Vo) | =27 Hay(wela). (3.14)
It follows from (2.9) and (3.14) that
¥, ) d¥
oy (v p(zy™?)) T 27 g e(x).

Therefore the approximations ¢ 1 (see (3.8)) in this case can be written in
the form (cf (2.10))

o)+ X g (-1 stou)] BENCAE)

91,k,1($) =E

In the multivariate case p > 1 and Y = diag(Y1,...,Y}) the function gy x,
from (3.8) can be written in the form

Grkp(®) =B pp(@) + z:; 2%, (0 (Y = 1))’ %(CL‘)] : (3.16)
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where ¢, (x) = p(z1) ...p(z,). As it was shown in Shimizu (1995) (see the
proof of Theorem 2, p.135) the expression of g ;. ,, in the form (3.16) enables
us to extend Theorem 3.3 to the general case when the scale matrix may be
not necessary diagonal.

In fact, assume that X = SZ, Z is distributed as the standard nomal
distribution N,(0, I,), and S is symmetric positive definite matrix and is not
diagonal. Fix any Borel set A C R”. We have

P(X € A) = Eg[P(X € A|9)], (3.17)

where Eg denotes expectation with respect to S. It means we can construct
at first approximation for P(X € A) for any given value of S and then taking
expectation with respect to S we get result for P(X € A). In the following
arguments S is non-random symmetric positive definite matrix. Under this
assumption on S there exists orthogonal matrix 7" such that S = TLT",
where L = diag(L4,...,L,) and L; = Yil/2 fori=1,...,p. We have

P(SZ € A)=P(LT'Z € T'A) = P(LZ € T'A), (3.18)

as T'Z has also the standard normal distribution in R?”.
Note that

/T,A pp(@)de = /A pp(@)de, (3.19)

as the standard normal distribution is invariant with respect to orthogonal
transformations. Moreover, if we put v = T'x, then T'0x = Op and therefore
we have that 0 (Y — )0 = O T(Y — INT'0p = 04y(S* — I)Dy. Thus, we
get forany j=1,2,...,k—1

/ j / .7
/T 0¥ = DY ¢y(@)d = /A (9 (S* = Naw) gp(v)dv.  (3.20)
Combining (3.16)~ (3.20) we can rewrite (3.12) in the form

1

|P(X €A — /AE op(x) + Zl 5/l (8;,3(52 _ [)aw)j@p(w)] dx

< %y&k,pE[tr(y o (3.21)

provided (S? — I)* is positive definite matrix, as in this case
p
tr(S? — N =Y (vi — 1)~

k=1

10



The similar extension is possible for Theorem 3.2 as well.
It is necessary to note that for 6 = —1 or +1 and for any positive p we
have

8% (2 play™) | = SpHa(a)p(x). (3.22)

y=1

Therefore the previous arguments imply the parts (i) and (ii) in the following.

Theorem 3.4. Let k = 1,2 or 3 and X = SZ be a multivariate scale
mizture with Z ~ N,(0,1,) and S is such that (S°? — I) is positive definite
matriz and Bltr(S%? — I)*] < co. Then for any Borel set A C RP we have
(i) for k =1:

I
‘P(X €A — /A<pp(a:)da: < 5 min{”s.1.p, Vs.1p JE[tr(S? — I)],

(ii) for k = 2:

PO €)= [ B [oy(o) + (60 (0657 - o) ()] o

< —min{ns2,, nggyp}E[tI'(Sé/p — 1)2],

N —

(ili) for k = 3:

I

j=1

J!
+ (0 - %5;)) (0(S77 = 10z ) o ( ]

1 .
< 5 min{ns 3 ,, V5,37P}E[tr(56/p — 1)3].

The part (ii) in Theorem 3.4 holds without assumption that (S%7 —I) is
positive definite matrix. Moreover if (S%# — I) is not positive definite, the
in Theorm 3.4 (i), (iii) we can use inequalities

E[tr(S”7 — )] < p/2 (E[tx($77 — 1),

11



and

Eltr(S*7 - 1)*) < (E[u(s7 — 1))

provided that E[tr(S%? — I)?] < oo and E[tr(S%? — I)1] < oo, respectively.
The inequlities follows from Holder’sinequality. In order to derive the result
(iii), it is enough to show that

dx

P o \2
Y,—1)—
/T’A (;( ’ >32i> h¢(m,z> Z21=.=2p=1

- /T’A 0 (O (Y = 1)Og)’ (3.23)
+ (20" = 0p) (Y = 1)°0z)| pp(@)da,

where hy(z, 2) = [T0-, 2z @(z:2; ). We have
% 5 5 2 4 2 2, 2
5.7 (z Pg(zz p)) = [p zt — (4p” + 0p)z” + p —|—5p} o(x). (3.24)
z=1

v = (30 @ZZ)QhSO(w,z)

=1

It follows from (3.22) and (3.24) that

M = lZ( DX p’ai — (4p° + 6p)xi + p* + op}

i=1

+ 2 Z (yi — D(y; — 1)P2H2($i)H2(xj)

1<i<j<p

op(x). (3.25)

Since Hy(z) = x* — 622 + 3, we get from (3.25) that
M — P (9(Y - 1ox)’ gp()

(yi = 1)*[(20* = dp)a? + 6p — 20°| gy ()

Il
M@

-
Il
—

I
M=

> (i = 1)*(2p" = 0p) (a7} — Dpy()
= (20" = 0p) (Y — 1)*0z) pp().

Hence (3.23) is proved.

s
I
_
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4. Asymptotic Expansions When A Is Sym-

metric

In this section we show how asymptotic expansions for P(X € A) given
in Theorems 3.1~ 3.3 can be written in the case when A is a symmetric set,

that is, A C R” stays the same for any permutation of cordintes z;. ..., x,.
Put
N k—1 1
PaeslA) = [ guelw)da = 3 S 0(4), (4.1)
i=0J>
where My(A) = [, gp(x)dx and for j > 1
4!
Mi(A) = S [ B (@) b, (1) gy (@) de
G) Ji. . Jpe JA
xE[(Y1— 1) (Y, = 1) (4.2)
Assume that A is symmetric with respect to z1, ..., z, and let
Is; = /Ab&i(ﬁﬁl)gp(m)dwa
nij = | bsal@n)ba(2)gp(@)da. (4.3)
Is i = /Abé,i(xl)bé,j(xQ)bé,j(x3)gp(m)dwaSO on.
Then we have
p
M(A) = LnED (Y- 1),
i=1
p p
Mo(A) =I5B — DY + LB (- DG - DL (44
i—1 i#]
p p
My(A) = LB} (Yi— D] +3LuE[ (Vi — 1)%(Y; — 1)]
i—1 i#j
p
+ LanE[ Y (Vi)Y = DY —1)].
i#j#k
Assume that Y; > ... > Y, are the characteristic roots of a random matrix

W. Let V=W — I. Then it is easily seen that

p . .
Y, -1 =V, j=1,2,...,

i=1

13



p
SV 1)Y= 1) = (V) =V,

i#]

p
SV = 1Y — 1) = trVitrV? — trV?, (4.5)
i#]

p

S Y- -1V —1) = (trV)® + 3trVtrV? — 4trV>.
i#j#k

Note that the quantity >0, |Y; — 1|¥ appeared in our error bounds can
be written as

p p
YlYi-1F = Y (v, -1t
=1 =1
= trV*, (4.6)

if k is even. If k is odd and E(Y;*™!) < oo for all i = 1,2,...,p, then using
Holder’s inequality we get

P P k/(k+1)
i=1

i=1
k/(k+1
Pt/ () (trv(kJrl)) /(k+ )' (4.7)

5. Hotelling’s T;-Statistic

In this section we consider error bounds for asymptotic approximatins of
Lawley-Hotelling’s T-statistic

T2 = ntrS,S. (5.1)

where S, and S, are independently distributed as Wishart distributions
W,(q,1,) and W,(n, I,), respectively. The statistic is used as one of the
test statistics in multivariate linear model. The limiting of 77 is a chi-square
distribution with r = pq degrees of freedom. Further, it is known (see, e.g.,
Anderson (1984)) that 7§ has an asymptotic expansion

P <a) = Gi(a)+1-{(g—p—1GCi()
- 2qGr+2(I) + (q +p+ 1)GT+4(ZE)} + O(n_2)7

14



where G, is the distribution function of the chi-squared variate with r degrees
of freedom.

Lemma 5.1. We can write TZ in terms of a multivariate scale mizture
X =(Xy,...,X,) =diag(S1,...,5,)Z as

To=X+...+ X, (5.2)

where Z = (Zv,...,2y,), 21, ..., Z, are i.i.d. random variables, Zy ~ ng and
letting S; =Y, *(i=1,...,p), Y1 > ... > Y, > 0 are the characteristic roots

1

of W such that nW ~ W,(n, I,,).

Proof. It is well known that the distribution 7 can be expressed as

T2 = ntr(U'U)S!
— ntr(HU'UH)(H'S.H)™,

where U is a ¢ X p random matrix whose elements are independent idntically
distributed as N(0,1), and H is an orthogonal matrix. Note that the dis-
tributions of UH and H'S.H are the same as U and S,, respectively. The
result is obtained by choosing H such that H'S.H = diag(Y7,...,Y,).

Lemma 5.2. Let U = (Up,..., Uiy, ..., Upr,...,Upyy) be an v = pq
dimensional random vector such that

U = (diag(5i,....5,) ® I,)Z,

where Z = (Z11,. .., Z1gy -+ Zp1s - - s Zpg), Ziys are i.i.d. random variables,
Zy1 ~ N(0,1), and letting S; = Yfl/z(i =1,...,p), Y1 >...>Y,>0 are

the characteristic roots of W such that nW ~ Wy(n, 1,). Then we can also
write T? as

T2 =U'U. (5.3)
Proof. This is a direct consequence of Lemma 5.1.

Now we show what kind of approximations and error bounds we can give
for the distribution function of 7§ using Theorems 3.2 and 3.3. First we use
the representation (5.2). In this case we apply Theorems 3.2 and 3.3 with
d=—1land p=1.

15



Let g4(x) be a density function of xZ, i.e.

1
gq(x) = W(CI/Q)

Then the functions b_; ;(z) defined by (3.3) are given by

2% exp(—x/2).

basle) = —3r—a)

boro(z) = i{xQ —2qz +q(q — 2)},

bagle) = —gle =30 +3ala— 2o — (a2 -9} (Y
boya(z) = 1—16{954 — 4gz° + 6q(q — 2)2* — 4q(q — 2)(¢ — )z

+q(q —2)(¢ —4)(¢ —6)}.

It is easy to compute that

baa@ga() = 50~ gusal@)}
b_12(7)ge(x) = iq {(q —2)g4(z) — 2q9412(x) + (g + 2)ggta(2) },

bo13(x)ge(z) = %q {(g —2)(qg — 4)g4(x) — 3q(q — 2)ggt2(x)

+ 3q(q +2)ggra(z) — (¢ +2)(q + 4)ggrs(v)},

bra@lan(@) = oalla—2)a— o 6)g(v)

— 4q(q — 2)(q — 4)gqr2(x) + 6q(q + 2)(q + 4)ggra(z)
— 8q(q+2)(q +4)gq+6(x)
+ (¢+2)(g+4)(q+6)ggs(z)}-

Since

P(T] <x) =P(X € A) (5.5)
with A = {(z1,...,2,) € R?: z1+ ...+ 2, < x}, the set A is symmetric
with respect to z1,...,z,. Therefore, applying the results in Section 4, we
get

. 3.1

P_14p(A4) = Z ,—'Mj(A), (5.6)

j=0J"

where



with 7 = pgq, and in the expressions for M;(A),7=1,2,3 in (4.4) we have to
take

I 1= %q [Gr(2) — Grya(z)],

11,2 = 20{(a ~ 2)Gy(x) ~ 2Gra(e) + (0 + 2Crsa(x)},
I 11 = iCIQ {G(7) = 2Gry9(7) + Grya()},
I 1 = gadla— 20— 9Golx) = 3ag — 2)Goal)
+3¢(q 4+ 2)Grqa(z) = (¢ +2)(q + 4)Gris(2)}
I = 50 (g = 9)Gu(w) — 3lg — 2)Gran(a)
13(q + 2)Gra(®) — (g + 2)Grys(®)}
I 1111 = %qg {Gr(7) = 3G rya(2) + 3G, 1a(x) — Grys(T)}

Let V=W — I, where the characteristic roots of W are Y3,...,Y,. Then we
can use the following results:

1
E[trtV] =0, E[trV?] = (p +1),
1 1
E[(trV)?] = —2p, E[trV3] = ﬁp(p +3p+4),
4
ElaVl?] = pp(p+1), Bl(V)] = %p.

Using the above results we obtain

P_i2p(A4) = Gy(a),

P_12p(4) = Gi(z)+ ™ " {g—p—1)G,()
- 2qGr+z(I) +(¢+p+1)Gria(z)}
+ Sen C{0G (2) + ()Gyaa(a)
+ 0Grsa(@) + (Grye(2)}-

It follows from Theorems 3.2 and 3.3 that their error bounds are given as
follows:

[P(T < @) = P_iz,(A)

17



1

< %p(p + D) min{n_12p, v-12,}, (5.7)
P75 < @) = Py ,(A)]
1 .
< ﬁp(QpQ +5p+5) min{n_14p, V_14p}- (5.8)

Next we consider asymptotic expansions and their error bounds based on
the expression (5.3), i.e

P(T2 < z) = P(U € A), (5.9)

where

A={(ur1,. - Utgs -, Upt,- .-, Up,) € R": Zufj < x}.
i\j
In this case we use Theorems 3.2 and 3.3 with § = —1 and p = 1/2. How-
ever, it is necessary to make a slight modification, since the number of in-
dependent elements in the scale matrix is not r, but p. In fact, the term
17, v, % g2y, %) in the M; of (4.1) or (5.5) should be changed to

p q 1
TTTT v/ (usui”?) H yi?(2m) 9/ exp(—gyis), (5.10)
i=1j=1

where uf = >9_, uj;. Let b_1, be the function corresponding to the function
bs, in (4.2). Then, the function b_,; is defined by

J 1

_ 1
=y by (uy )y (2m) T exp(—Syu?).

We denote the corresponding approximation by

3
14p Z

Lo
j— (5.11)

It is easily seen that b_; ; = [~)_17j. This result implies that the two approxi-

mations P_y 4,(A) and P_y 4, (A) are the same. Further, the corresponding
error bounds are also the same, since

E[lb-1,5(X)[] = E[[b-1,(U*)]],

where X is distributed as x?, U* = U} 4 ... + U} and Uy, ..., U, are inde-
pendent identically distributed as N(0,1).

18



6. Lemmas

First we consider a basic result in the univariate case, i.e., X = SZ =
Yorz.

Lemma 6.1. We have for any k > 1
|G (@) = Gap(w)| < BspB ||V = 1)*] (6.1)
1 (x) = gan(@)l, < mosB [[Y = 1), (6.2)
where Bs i = Bs k-

Proof. For a proof of (6.1), see Shimizu and Fujikoshi (1997). In the
following we prove (6.2). Here and in following we use an expansion formula
for a function h with £ > 1 continuous derivatives

) = (D) + X (1 =17
+ ((Z:?)vE (=)0 (14 r(y - 1)), (6.3)

where 7 is an uniformly distributed [0, 1] random variable.
For any y > 0 let

Nsp(r,y) =y~ g(ay™") — gox(z,y). (6.4)
Using (3.3), (6.3) and (6.4) we can write also for k£ > 1

Bsnlo) = G B[ =) (1 vl = 1)

xbs (2(1+7(y = 1)) g (e(1+ 7y = 1)7)] . (65)

The idea of our proof is to use (6.4) or (6.5) depending on whether y is far
from 1 or close to it. Let

@ = (&n/nsw) "

Note that ¢ : 0 < < 1. If y : 0 < y < ¢, then it follows from (6.3) that

k—1 1 — k
1Ask(z, ), < (1 +]§]5&j> ﬁ
= nexly — 1% (6.6)
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If y > ¢, then for any 7 € [0,1] we have 1 + 7(y — 1) > ¢. Therefore it
follows from (6.5) and Fubini theorem that

ly — 1|

|Ask(z,v)ll, <&k = nsxly — 1|*. (6.7)

Combining (6.4), (6.6) and (6.7) we get (6.2).

Lemma 6.2. Let 0 < j; < jo < --- < j, be integers such that
Ji+--+Jgp=7 and ay,---,a, be non-negative real numbers. Then

Soait-cap < (p—Dlaf + - +a)), (6.8)
where summation on the left-hand side is taken over all p! permutations
(ila e 7ip> Of (jla e 7jp)'

Remark 6.1. Note when a; = --- = a, = 1 inequality (6.8) is written in

the form p! < p!. Therefore, (6.8) is sharp.

Proof. We prove (6.8) by mathematical induction on p. If p = 1, then
(6.8) is obvious. We assume that (6.8) is valid for p —1 > 1. We write the
left-hand side of (6.8) in the form

> ai... ZP:a Pi_j(as, -, ap) + ...+ a"Pi_j (as,...,qp),

where P;_j (az,...,a,) = Y a% .. -alr and the summation here is taken over
all (p—1)! permutatlons (ig,---,1p) of (J2,...,Jp). Polynomials P;_j,, ..., P;_;,

are defined similarly. The hypothesis of the induction asserts that for all
(=1,2,...,p we have

Pi_j(az,....a,) < (p— 2 a7 + ... +al 7).
Therefore we get
> ay... 2)[al(aé‘—lererag—jl)Jr._‘
+ a{p (ag*jp + ...+ a;—jp)] . (69)

It is clear that on the right-hand side of (6.9) we can replace a; by any other
a;, that is, for i = 1,2,---, p we have

Y oalt-ar < (p—2)! Z a4 +a” D a7 (6.10)

n=1,n%#i n=1,n#i
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Note that for any positive b; and by a function b{'*xbg + b“”fb%fx of = is convex
on [0, 7] and is equal to b + b} for x = 0 and = = j (cf. Lemma 2 in Shimizu
(1995)). Therefore for all integers ¢ =0, 1,---,j we have

Wb 4+ BT < b+ b (6.11)
Thus summing up inequalities (6.10) for ¢ = 1,2,---,p we get from (6.11)
that

pY_ait--ar < (p—2)(p—1)p(af + -+ ak). (6.12)

Hence we obtain (6.8).

Lemma 6.3. Assume that G(x) satisfies Al. Let j(0 < j < k) be a
positive integer and

)4

: s -5 -5
M(*’E) = Z]! H af ﬁyz]f Cs.5; (xiyijip)g(xiyijip)a
() =1 v

where ay,---,a, are positive numbers and ;) means summation over all
non-negative integers ji, ..., jp such that j1+...+j, = j. If all y;;, > ¢ > 0,
1=1,2,...,p, then

|M(z)] < (a{ + ...+ ai)gpfjW&j’p (6.13)

Wi.jp is defined by (2.3).

Proof. Since all y;;, > ¢,© = 1,2,...,p, and for any permutation of
(15 - -+ Jp) & product ag, . .. a5, does not change, we get

M (z)] <o) <aj1 g, > alt .a?’) , (6.14)
4] 1

where >l denotes summation over all non-negative integers 0 < j; < ... <
Jp such that j; + ...+ j, = j, and >7; means summation over all different
permutations {{1, (s, --,¢,} of a fixed set {jl,jg, -++,Jp}. Since Y, consists
of p!/(i1!...ip!) summands, where iy, ..., 14, are such that m and iy, ..., %,
are positive integers satisfing

OSJIZZJM <ji1+1 :"':ji1+i2
<o < Jibetim 4L = e = Jiti (5 Jp) <
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we get (6.13) from (6.14) and Lemma 6.2.

Lemma 6.4. Let
HG (ziy; ).

Assume that G(z) satisfies A1. Then for any positive ay, . . ., a, and a positive
integer 7 : 0 < j < k we have

o J
(al——i-...—i—ap@) H(a:,y)
p

Yi=Y%i0,4=1,2,...,p

, 4l
<(al+...+ a;)éwg,j,p, (6.15)

provided yo > ¢ > 0,1 =1,2,...,p, where Ws;, is defined by (2.3).

Proof. It follows immediately from Lemma 6.3 and the fact that the
left-hand side equals

L _ _
> g Iaf pyioﬁcé,ji (xib0™")9 (it
@ = I

For any integrable function F(x) : R? — R!, we define

IF@)l, = [ 1F(@)da.

Lemma 6.5. Assume that g(z) satisfies A2. Let j(0 < j < k) be a
positive integer and

1 76 76
Z]' Ha] _lyzjz 'bs 5, (x z‘yijip)g(xiyijip)’

where ay,---,a, are positive numbers. If all y;;, > ¢ > 0, ¢ = 1,2,...,p,
then ' ' '
[ (@)llp < (a1 + ...+ ap)e ™ Vip (6.16)

Vs.ip s defined by (3.10).
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Proof. The arguments are the same as in Lemma 6.3. Since all y;;, > ¢
and for any permutation of (ji, ..., j,) a product &, . .. &s,;, does not change,
we get

(@)l <™ > <fj1 &y Do ar af?) : (6.17)
] 1
Thus, Lemma 6.5 and (6.16) impl (6.15).
Lemma 6.6. Let

P
hzx,y) =[]y *g(ziy; ).
=1

Assume that g(x) satisfies A2. Then for any positive ay, . . ., a, and a positive
integer j : 0 < j < k we have

) o\’
<a1 o + + apay) (z,y)

Yi=Y%i0,4=1,2,...,p

, gl
< (@] + o+ @) Vo (6.18)
provided yo > ¢ > 0,1 =1,2,...,p, where Vs, is defined by (3.10).

Proof. It follows immediately from Lemma 6.5 and the fact that the
left-hand side equals

P 1 _ B
Z J! H aj' pyiohbém (f’ciyioap)g(%yioap)-
G =1 JE

7. Proof of Theorems
Proof of Theorems 2.1. Note that
Fy(xz)=E[H(z,Y)],

where Y = (Y1,...,Y,) and a function H is defined in (6.13). We use a
Taylor formula for a function H with & > 1 continuous derivatives

H(y) = H()+ Y HO()(y — 1) + S HO0 47y~ 1))y - 1), (71)
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where 7 is a number on (0,1). We construct an expansion for H using (7.1)
sequentially. Namely, at first we apply (7.1) to G(z1y; op ). We get

k-1
H(z,y) = G@l)*‘Zﬁ%a’@l)Q( Dy =1 + Ri(yr — 1)
j=1J>
X HQ(m7y)7 (72>
where
1 9
Rl =—— G(xly_5p)
kL oyk ( y=1+7(y1—-1)
and
HG (ziy; ).

Now we apply (7.1) for a function G(zay; °) so that for a summand

%C&j(%)g(%)(yl — 1) Hy(z,y),

we apply (7.1) with k replaced by k — j. At last we obtain the following
expansion

h(z,y) = g(z1)...g9(zp) +ZZH s (x:)g(@i) (1 — 1) + Ropp, (7:3)
J=1 (j) =1 Jit

where Rsyp is a sum of terms each of which can be written in the form

(y1 = 1" (g — D" My, (1) - - M, (y) (7.4)

with k; > 0 for i =1,2,---,p and k1 +... + k, = k. Each factor M, in (7.4)
has one of the following form:

1 oF

M) = Saa7

(Glay ™))

: (7.5)

y1=1+7(y—1)

My(y) = G(x) or My(y) = G(xy=°°) and when j : 1 < j < k—1, we have for
M;(y) one of the two representations:

—p

TYy ))

1 1o (cG (76)

j,céj( z)g(x) or ﬁﬁ—y{ G

y1=1+7(y—1)
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Let

o1 = (Wagop/Mssep) " (7.7)

At first we consider the case when 0 < min(yy,...,y,) < ¢1. Assume that
y1 is such that 0 < y; < ¢1. We have for any j:1 < j <k,

1=yl 4.+ | —y, )

1 k
SW(H—%’
L= — gl 4 L= g = ) (7.8)
Pk ok
< Ao (M=l + .+ 1=yl

Therefore, using Lemma 6.3, (7.3) and (7.7) we get

k=1
[Rspl < 2+ Z (’1 —yl+. 1= yp’]) Wi
j=1
1
< (L= L=y 7.9
e G 1= ul") (7.9)

k—1
X (2 + Z Wg}j’p)
j=1

If min(y1,---,y,) > ¢1 then using Lemma 6.4, (7.4) and representations for
summands contained in Ry, we get
Wi i,
[Baul < =% (1= 4+ 11—y |*]
1
= Takp 11—+ 1=yt (7.10)

According to remark in the beginning of the proof and combining (7.8) and
(7.9) we finish the proof of Theorem 2.1.

Proof of Theorems 2.2. The result can be proved by using arguments
similar to the proof of Lemma 2 in Shimizu (1995). In order to prove (2.6)
it is enough as usual to show that

p

p
[1 G ey ™) = Gonp(@)| < 50 D i — 11", (7.11)

i=1 =1
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where Gy, is defined by (2.2) but y;,4 = 1,. .., p, are considered as positive
real numbers.

We prove (7.10) by mathematical induction with respect to p. In the
case p = 1 the inequlity (7.10) was proved in Theorem 2.1 of Shimizu and
Fujikoshi (1997). Therefore, we can write for p > 2

k—1

fIIG(xiyZ ‘Sp) = |G(xp) + 2—21 %(yj — 1) es () g(x) + Rs,
X Iﬁ Glay; ), (7.12)

where |Rs,| < Bskly, — 1|*. Assume that (7.10) holds for p — 1. Then we
apply (7.10) to 122} G(z;y; %) with p replaced by p — 1 and k replaced by
k — j when [} G(zy; %) is a factor by (y, — 1)7 in (7.11). Thus, we get

p
II Gy ) = Gspp(@)| < Bsplyp — 1I°
-1

k-1 p

+ Z sq|Yp — "5 k—gp-1 Z |y — 1‘]97(1- (7.13)
q=0

i=1

We got (7.13) from (7.12) applying induction hypothesis to [[2=} G(z;y; ).
It is clear we could use the same arguments to the function [T;_, ;.; G(z;y; o)
with any j =1,2,...,p. Then we could get (7.13) with |y, — 1| with |y, — 1]
replaced by |y; — 1|. Since in all these inequalities the left-hand sides will
coincide, summing up the inequalities for j = 1,2,...,p and applying (6.12)
(cf. the proof of Lemma 2 in Shimizu (1995)) we come to (2.7) and recurrence
formula for s, stated in Theorem 2.2.

Proof of Theorem 3.1. This is a direct consequence of the inequality
(6.3) in Lemma 6.1.

Proof of Theorem 3.2. The proof is similar to the one of Theorem 2.2.
Note that

fo(x) = E[h(2, Y],
where Y = (Y7,...,Y,) and a function A is defined in (6.16). We construct

an expansion for h using (6.3) sequentially. Namely, at first we apply (6.3)
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to y1 " g(z1y; ). We get
k—1 1
h(z,y) = Z b5] z1)g(z1)(yr — 1)) 4+ Ry (y1 — 1)*
xhg(w,y), (7.14)
where
1 0
R, = E|(1-7)""'—(y ‘Spg(x Y 5’”)
P (k1) Oy* ( y=1+7(y1-1)

and

p
=TT v g (ziy; ).
=2

Now we apply (6.3) for a function y; * g(22y5 °?) so that for a summand
1 .
ﬁbé,j(l'l)g(xl)(yl — 1) ha(z, y),

we apply (6.3) with k& replaced by k — j. At last we obtain the following
expansion

- 9(p)

hz,y) = g(z1)..
ZZﬁ béjz zi)g(x:)(y1 — 1)) + Rs o, (7.15)
j=1 (j) i=1

where Ry, is a sum of terms each of which can be written in the form

(yr = D" (yp = DL (1) -+ I (3) (7.16)

with k; > 0 for i =1,2,---,p and ky + - - - + k, = k. Each factor J; in (7.15)
has one of the following form:

1 k
(o) = G (= 7 (ot ™) dr, (7.17)

y1=1+7(y—1)

Io(y) = g(z) or Iy(y) = y~%g(xy~°") and when j : 1 < j < k — 1, we have
for I;(y) one of the two representations:

ﬁbé,j (z)g(x) or

PN S
- '/0 (1_7')J —{ (yl p9($y1 p)) dr.

y1=14+7(y—1)




Let

Y1 = (%,k,p/né,k,p)l/k‘ (7'18>

At first we consider the case when 0 < min(yy,...,y,) < ¢1. Assume that
yy is such that 0 < y; < 1. Then, the same arguments as in (7.7) and (7.8)
imply that for any 7 :1 <75 <k,

P

] (M=ml*+. .+ 1 =gl"), (7.19)

1=y 4. 4 ]1—y) <

and

[ Rskpllp < Mo [|1 - yl|k +.. (1 ypﬂ : (7.20)
Similarly, if min(yy,---,y,) > ¢1, then we have

|Rspllo < mo (11 =91l + .+ 1= yyl"]. (7.21)

These results imply the consequence of Theorem 3.2.

Proof of Theorems 3.3. It is enough to repeat arguments of Lemma 2
and Theorem 2 in Shimizu (1995) replacing Lemma 1 in Shimizu (1995) by
our Lemma 6.1.
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